Алгоритм нахождения площади криволинейной трапеции

Презентация к уроку

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Ключевые слова: интеграл, криволинейная трапеция, площадь фигур, ограниченных лилиями

Оборудование: маркерная доска, компьютер, мультимедиа-проектор

Тип урока: урок-лекция

Цели урока:

  • воспитательные: формировать культуру умственного труда, создавать для каждого ученика ситуацию успеха, формировать положительную мотивацию к учению; развивать умение говорить и слушать других.
  • развивающие: формирование самостоятельности мышления ученика по применению знаний в различных ситуациях, умения анализировать и делать выводы, развитие логики, развитие умения правильно ставить вопросы и находить на них ответы. Совершенствование формирования вычислительных, расчётных навыков, развитие мышления учащихся в ходе выполнения предложенных заданий, развитие алгоритмической культуры.
  • образовательные: сформировать понятия о криволинейной трапеции, об интеграле, овладеть навыками вычисления площадей плоских фигур

Метод обучения: объяснительно-иллюстративный.

В предыдущих классах мы научились вычислять площади фигур, границами которых являются ломаные. В математике существуют методы, позволяющие вычислять площади фигур, ограниченных кривыми. Такие фигуры называются криволинейными трапециями, и вычисляют их площадь с помощью первообразных.

Криволинейная трапеция (слайд 1)

Криволинейной трапецией называется фигура, ограниченная графиком функции , (щ.м.), прямыми x = a и x = b и осью абсцисс

Различные виды криволинейных трапеций (слайд 2)

Рассматриваем различные виды криволинейных трапеций и замечаем: одна из прямых вырождена в точку, роль ограничивающей функции играет прямая

Площадь криволинейной трапеции (слайд 3)

Зафиксируем левый конец промежутка а, а правый х будем менять, т. е., мы двигаем правую стенку криволинейной трапеции и получаем меняющуюся фигуру. Площадь переменной криволинейной трапеции, ограниченной графиком функции , является первообразной F для функции f

И на отрезке [a; b] площадь криволинейной трапеции, образованной функцией f, равна приращению первообразной этой функции:

S к. т.

Задание 1:

Найти площадь криволинейной трапеции, ограниченной графиком функции: f(x) = х 2 и прямыми у = 0, х = 1, х = 2.

Читайте также:  Как в инстаграмме в сторис добавить ссылку

Решение: (по алгоритму слайд 3)

Начертим график функции и прямые

Найдём одну из первообразных функции f(x) = х 2 :

F(x) = ,

Значит

Самопроверка по слайду

Интеграл

Рассмотрим криволинейную трапецию, заданную функцией f на отрезке [a; b]. Разобьём этот отрезок на несколько частей. Площадь всей трапеции разобьётся на сумму площадей более мелких криволинейных трапеций. (слайд 5). Каждую такую трапецию можно приближённо считать прямоугольником. Сумма площадей этих прямоугольников даёт приближённое представление о всей площади криволинейной трапеции. Чем мельче мы разобьём отрезок [a; b], тем точнее вычислим площадь.

Запишем эти рассуждения в виде формул.

Разделим отрезок [a; b] на n частей точками х =а, х1,… ,хn = b. Длину k-го обозначим через хk = xk – xk-1. Составим сумму

Геометрически эта сумма представляет собой площадь фигуры, заштрихованной на рисунке (щ.м.)

Суммы вида называются интегральными суммами для функции f. (щ.м.)

Интегральные суммы дают приближённое значение площади. Точное значение получается при помощи предельного перехода. Представим, что мы измельчаем разбиение отрезка [a; b] так, что длины всех маленьких отрезков стремятся к нулю. Тогда площадь составленной фигуры будет приближаться к площади криволинейной трапеции. Можно сказать, что площадь криволинейной трапеции равна пределу интегральных сумм, Sк.т. (щ.м.) или интегралу, т. е.,

Интегралом функции f (х) от a до b называется предел интегральных сумм

= (щ.м.)

Формула Ньютона- Лейбница.

Помним, что предел интегральных сумм равен площади криволинейной трапеции, значит можно записать:

Sк.т. = (щ.м.)

С другой стороны, площадь криволинейной трапеции вычисляется по формуле

S к. т. (щ.м.)

Сравнивая эти формулы, получим:

= (щ.м.)

Это равенство называется формулой Ньютона- Лейбница.

Для удобства вычислений формулу записывают в виде:

= = (щ.м.)

1. Вычислить интеграл по формуле Ньютона- Лейбница: (проверяем по слайду 5)

2. Составить интегралы по чертежу (проверяем по слайду 6)

3. Найти площадь фигуры, ограниченной линиями: у = х 3 , у = 0, х = 1, х = 2. (Слайд 7)

Читайте также:  Яндекс карты на навигатор prestigio

Нахождение площадей плоских фигур (слайд 8)

Как найти площадь фигур, которые не являются криволинейными трапециями?

Пусть даны две функции, графики которых вы видите на слайде. (щ.м.) Необходимо найти площадь закрашенной фигуры. (щ.м.). Фигура, о которой идёт речь, является криволинейной трапецией? А как можно найти её площадь, пользуясь свойством аддитивности площади? Рассмотреть две криволинейные трапеции и из площади одной из них вычесть площадь другой (щ.м.)

Составим алгоритм нахождения площади по анимации на слайде:

  1. Построить графики функций
  2. Спроецировать точки пересечения графиков на ось абсцисс
  3. Заштриховать фигуру, полученную при пересечении графиков
  4. Найти криволинейные трапеции, пересечение или объединение которых есть данная фигура.
  5. Вычислить площадь каждой из них
  6. Найти разность или сумму площадей

Устное задание: Как получить площадь заштрихованной фигуры (рассказать при помощи анимации, слайд 8 и 9)

Домашнее задание: Проработать конспект, №353 (а), № 364 (а).

Список литературы

  1. Алгебра и начала анализа: учебник для 9-11 классов вечерней (сменной) школы/ под ред. Г.Д. Глейзера. — М: Просвещение, 1983.
  2. Башмаков М.И. Алгебра и начала анализа: учебное пособие для 10-11 кл.сред.шк./ Башмаков М.И. — М: Просвещение, 1991.
  3. Башмаков М.И. Математика: учебник для учреждений нач. и сред. проф. образования/ М.И. Башмаков. — М: Академия, 2010.
  4. Колмогоров А.Н. Алгебра и начала анализа: учебник для 10-11 кл. общеобразовательных учреждений/ А.Н.Колмогоров. — М: Просвещение, 2010.
  5. Островский С.Л. Как сделать презентацию к уроку?/ C.Л. Островский. – М.: Первое сентября, 2010.

Рис. 8.1. Криволинейная трапеция

Фигура, ограниченная снизу отрезком [a; b] оси Ox, сверху графиком непрерывной функции y = f(x) такой, что f (x) ≥ 0 при х [a; b] и f (x) > 0 при х (а; b), а с боков ограниченная отрезками прямых х = а и x = b, называется криволинейной трапецией.

Отрезок [a; b] называют основанием этой криволинейной трапеций.

Площадь криволинейной трапеции вычисляется по формуле:

Читайте также:  Как избавиться от воробьев во дворе дома

Таким образом, геометрический смысл определенного интеграла заключается в вычислении площади криволинейной трапеции.

Приведём различные примеры криволинейной трапеции:

Рассмотрим основные способы вычисления площади криволинейной трапеции:

Рисунок Формула
или
S=S1+S2

Алгоритм нахождения площади криволинейной трапеции:

1. Построить графики функции;

2. Определить пределы интегрирования a и b;

3. Выбрать и записать соответствующую формулу площади криволинейной трапеции;

4. Вычислить площадь криволинейной трапеции.

ПРИМЕР : Вычислить площадь криволинейной трапеции, ограниченной осью Ох, прямыми х = -1, х = 2 и параболой y = 9 — x 2 .

Решение: Построим график функции y = 9 — x 2 и изобразим данную криволинейную трапецию:

y = 9 — x 2 парабола, ветви вниз,

координаты вершины:

Точки пересечения с осью Ох:

x 2 = 9 => x1/2 = 3

Проведём прямые х = — 1 и х = 2

f(x)=9 — x 2 a = — 1 b = 2

Формула для вычисления площади криволинейной трапеции:

.

Лекция 9. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Дата добавления: 2016-06-05 ; просмотров: 6688 ;

Методическое пособие для учащихся

Скачать:

Вложение Размер
prakticheskoe_zanyatie_vychislenie_ploshchadi_krivolineynoy_trapetsii.docx 176.15 КБ

Предварительный просмотр:

ВЫЧИСЛЕНИЕ ПЛОЩАДЕЙ ПЛОСКИХ ФИГУР С ПОМОЩЬЮ

Цель практического занятия: приобрести навыки и умения вычисления площадей фигур.

  1. Краткие сведения из теории

Геометрический смысл определенного интеграла.

Если интегрируемая на отрезке функция f(x) неотрицательна, то определенный интеграл численно равен площади S криволинейной трапеции a ABb, ограниченной графиком функции y = f(x) , осью абсцисс 0х и прямыми х = а и х = b , т.е.

  • Если функция на отрезке , то площадь криволинейной трапеции, ограниченной кривой , осью 0х и прямыми равна
  • Если функция на , то площадь вычисляется по формуле (1) от абсолютной величины подынтегральной функции
  • Если надо вычислить площадь фигуры, ограниченной двумя кривыми и , при условии, что , то искомую площадь найдем как разность площадей двух криволинейных трапеций

Для нахождения пределов интегрирования надо найти абсциссы точек А и В пересечения кривых, решив уравнение .

  1. Найдите площадь фигуры, ограниченной данными линиями,