Аналитическое решение дифференциального уравнения

Общее решение дифференциальных уравнений.

Для нахождения аналитических решений дифференциальных уравнений в Maple применяется команда dsolve(eq,var,options), где eq – дифференциальное уравнение, var – неизвестные функции, options – параметры. Параметры могут указывать метод решения задачи, например, по умолчанию ищется аналитическое решение: type=exact . При составлении дифференциальных уравнений для обозначения производной применяется команда diff , например, дифференциальное уравнение y» + y = x записывается в виде: diff(y(x),x$2)+y(x)=x.

Общее решение дифференциального уравнения зависит от произвольных постоянных, число которых равно порядку дифференциального уравнения. В Maple такие постоянные, как правило, обозначаются как _ С1 , _ С2 , и т.д.

Общее решение неоднородного линейного дифференциального уравнения всегда выводится так, чтобы была четко видна, структура этого решения. Как известно, общее решение неоднородного линейного дифференциального уравнения равно сумме общего решения соответствующего однородного дифференциального уравнения и частного решения этого же неоднородного дифференциального уравнения. Поэтому в строке вывода решение неоднородного линейного дифференциального уравнения всегда состоит из слагаемых, которые содержат произвольные постоянные (это общее решения соответствующего однородного дифференциального уравнения), и слагаемых без произвольных постоянных (это частное решения этого же неоднородного дифференциального уравнения).

Команда dsolve выдает решение дифференциального уравнения в невычисляемом формате. Для того, чтобы с решением можно было бы работать далее (например, построить график решения) следует отделить правую часть полученного решения командой rhs(%) .

Задание 1.1.

1. Найти общее решение дифференциального уравнения y ‘+ y cos x =sin x cos x .

de : =

1

Итак, решение искомого уравнения есть функция 1 .

Замечание : при записи решения диффреренциального уравнения в Maple в строке вывода произвольная постоянная обозначена как _ С1 .

2. Найти общее решение дифференциального уравнения второго порядка y » — 2 y ‘+ y =sin x + e — x .

deq :=

Замечание : так как исходное уравнение было второго порядка, то полученное решение содержит две произвольные константы, которые в Maple обычно обознаются как _ С1 и _ С2 . Первые два слагаемых представляют собой общее решение соответствующего однородного дифференциального уравнения, а вторые два – частное решение неоднородного дифференциального уравнения.

3. Найти общее решение дифференциального уравнения порядка y »+ k 2 y =sin( qx ) в двух случаях: q ¹ k и q = k (резонанс).

de :=

Теперь найдем решение в случае резонанса. Для этого перед вызовом команды dsolve следует приравнять q = k .

Замечание : в обоих случаях частное решение неоднородного уравнения и общее решение, содержащее произвольные постоянные, выводятся отдельными слагаемыми.

Фундаментальная (базисная) система решений.

Команда dsolve представляет возможность найти фундаментальную систему решений (базисные функции) дифференциального уравнения. Для этого в параметрах команды dsolve следует указать output=basis .

Задание 1.2.

Найти фундаментальную систему решений дифференциального уравнения: y (4) +2 y »+ y =0.

de : =

> dsolve(de, y(x), output=basis);

Решение задачи Коши или краевой задачи.

Команда dsolve может найти решение задачи Коши или краевой задачи, если помимо дифференциального уравнения задать начальные или краевые условия для неизвестной функции. Для обозначения производных в начальных или краевых условиях используется дифференциальный оператор , например, условие y»(0)=2 следует записать в виде , или условие y ‘(1)=0: . Напомним, что производная n -го порядка записывается в виде .

Задание 1.3.

1. Найти решение задачи Коши: y (4) + y »=2cos x , y (0)= — 2, y ‘(0)=1, y »(0)=0, y »'(0)=0.

cond:= y(0)= — 2, D(y)(0)=1, (D (2) )(y)(0)=0, (D (3) )(y)(0)=0

y( x )= — 2cos( x ) — x sin( x )+ х

2. Найти решение краевой задачи: , , . Построить график решения.

de : =

Читайте также:  Huawei mediapad m5 со стилусом

y( x )=2 x — p + p cos( x )

Замечание : для построения графика решения предварительно следует отделить правую часть полученного выражения.

Системы дифференциальных уравнений.

Команда dsolve может найти решение системы дифференциальных уравнений (или задачи Коши), если в ней указать: dsolve(,), где sys — система дифференциальных уравнений, x(t),y(t),… — набор неизвестных функций.

Задание 1.4.

Найти решение системы дифференциальных уравнений:

Найдены две функции x ( t ) и y ( t ), которые зависят от двух произвольных постоянных _ С1 и _ С2 .

Приближенное решение дифференциальных уравнений с помощью степенных рядов.

Для многих типов дифференциальных уравнений не может быть найдено точное аналитическое решение. В этом случае дифференциальное уравнение можно решить с помощью приближенных методов, и, в частности, с помощью разложения в степенной ряд неизвестной функции.

Чтобы найти приближенное решение дифференциального уравнения в виде степенного ряда, в команде dsolve следует после переменных указать параметр type=series (или просто series ). Для того, чтобы указать порядок разложения n , т.е. порядок степени, до которой производить разложение, следует перед командой dsolve вставить определение порядка с помощью команды Order:=n .

Если ищется общее решение дифференциального уравнения в виде разложения в степенной ряд, то коэффициенты при степенях х найденного разложения будут содержать неизвестные значения функции в нуле y(0) и ее производных D(y)(0), (D@@2)(y)(0) и т.д. Полученное в строке вывода выражение будет иметь вид, похожий на разложение искомого решения в ряд Маклорена, но с другими коэффициентами при степенях х . Для выделения частного решения следует задать начальные условия y(0)=у1, D(y)(0)=у2, (D@@2)(y)(0)=у3 и т.д., причем количество этих начальных условий должно совпадать с порядком соответствующего дифференциального уравнения.

Разложение в степенной ряд имеет тип series , поэтому для дальнейшей работы с этим рядом его следует преобразовать в полином с помощью команды convert(%,polynom) , а затем выделить правую часть полученного выражения командой rhs(%) .

Задание 1.5.

1. Найти решение задачи Коши: , в виде степенного ряда с точностью до 5-го порядка.

y(0)=0>, y(x), type=series);

В полученном решении слагаемое означает, что точность разложения была до 5-го порядка.

2. Найти общее решение дифференциального уравнения y »( х ) — y 3 ( х )= е — х cos x , в виде разложения в степенной ряд до 4-го порядка. Найти разложение при начальных условиях: y (0)=1, y ‘(0)=0.

> restart; Order:=4: de:=diff(y(x),x$2)-

Замечание : в полученном разложении запись D(y)(0) обозначает производную в нуле: y ‘(0). Для нахождения частого решения осталось задать начальные условия:

3. Найти приближенное решение в виде степенного ряда до 6-го порядка и точное решение задачи Коши: , , , . Построить на одном рисунке графики точного и приближенного решений.

de : =

cond :=y(0)=1, D(y)(0)=1, D (2) (y)(0)=1

y( x )=

y( x )=

Замечание : тип решения дифференциального уравнения в виде ряда есть series , поэтому для дальнейшего использования такого решения (вычислений или построения графика) его обязательно следует конвертировать в полином с помощью команды convert

На этом рисунке видно, что наилучшее приближение точного решения степенным рядом достигается примерно на интервале — 1 x

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter

Дифференциальное уравнение–уравнение, связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Дифференциальное уравнение содержит в своей записи неизвестную функцию, её производные и независимые переменные. Порядок или степень дифференциального уравненияопределяется наибольшимпорядком производной, входящей в это уравнение.Если искомая функция зависит от одной переменной, то дифференциальное уравнение называется обыкновенным, если от нескольких – уравнением в частных производных.

Читайте также:  Xerox 3200 ошибка lsu

Примерамизаписи дифференциальных уравнений могут служить следующие уравнения:

В общем случае решение дифференциального уравнения n-го порядказаключается в отыскании функцииx=x(t), при подстановке которой в уравнение (1),последнее обращается в тождество:

(1)

Каждое дифференциальное уравнение имеет бесчисленное множество решений, которые отличаются друг от друга константами. Для однозначного определения решения требуется задать дополнительные начальные или граничные условия. Количество таких условий должно совпадать с порядком дифференциального уравнения или системы. В зависимости от вида дополнительных условий в дифференциальных уравнениях различают:

1) задачу Коши – все дополнительные условия заданы в одной точке интервала;

2) краевую задачу – дополнительные условия указаны на границах интервала.

Для дифференциального уравнения n-го порядка задача Коши состоит в нахождении решения x=x(t), удовлетворяющего уравнению (1) и начальным условиям (2).

(2)

Уравнение (1) сводится к системе n обыкновенных дифференциальных уравнений первого порядка заменой на неизвестную функцию p. Например, уравнение второго порядка можно записать в виде системы двух уравнений:

Различают точные (аналитические) и приближенные (численные) методы решения дифференциальных уравнений. К аналитическим методам относятся метод последовательного дифференцирования, использующий разложение в ряд Тейлора, и метод последовательных приближений.

В системе MATLAB для аналитического (символьного) решения дифференциальных уравнений или систем дифференциальных уравнений используется функция dsolve, имеющая следующий синтаксис:

dsolve(‘expr1’, ‘expr2’,…, ‘exprn’, ‘cond1’,‘cond2’,…, ‘condn’, ‘var’)

где: expr1, expr2,…, exprn–символьная запись дифференциальных уравнений, cond1, cond2,…, condn–граничные условия, var – независимая переменная, опциональный параметр, по умолчанию независимой переменной считается переменная t.

Имя независимой переменной не должна начинаться с D, так как это символ обозначает производную по независимой переменной: D=d/dt, D2=d 2 /dt 2 .

Пример: необходимо найти аналитическое решение следующего дифференциального уравнения:

Для нахождения решения данного дифференциального уравнения в системе MATLABнеобходимо выполнить следующую команду:

>>dsolve(‘Dx*t*(1+t^2)=x+x*t^2–t^2’, ‘x(0)=–pi/4’);

Однако, существуют дифференциальные уравнения, не имеющие аналитического решения, поэтому широкое распространение получили численные методы решения обыкновенных дифференциальных уравнений. К наиболее распространенным методам численного решения дифференциальных уравнений относят метод Эйлера, усовершенствованный метод Эйлера (Метод Эйлера – Коши), методы Рунге-Кутты, метод прогноза-коррекции Адамса.

Суть численных методов решения дифференциальных уравнений рассмотрим для следующего примера. Пусть требуется найти решение задачи Коши для дифференциального уравнения первого порядка, удовлетворяющего начальному условию:

Иными словами, требуется найти интегральную кривую x=x(t), проходящую через точку M(t, x).

Метод Эйлера

Для решения задачи Коши выберем достаточно малый шаг hи построим на интервале [t; tn] систему равноотстоящих точек:

В этом случае можем записать:

(3)

Процесс нахождения значения функции xiв узловых точках tiпо формуле (3) называется методом Эйлера. Основным недостатком этого метода является его невысокая точность.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9175 — | 7317 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Дифференциа́льное уравне́ние — уравнение, в которое входят производные функции, и может входить сама функция, независимая переменная и параметры. Порядок входящих в уравнение производных может быть различен (формально он ничем не ограничен). Производные, функции, независимые переменные и параметры могут входить в уравнение в различных комбинациях или могут отсутствовать вовсе, кроме хотя бы одной производной. Не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением. Например, f ′ ( x ) = f ( f ( x ) ) <displaystyle f'(x)=f(f(x))> не является дифференциальным уравнением [1] .

Читайте также:  Как поставить лимит на инстаграм

В отличие от алгебраических уравнений, в результате решения которых ищется число (несколько чисел), при решении дифференциальных уравнений ищется функция (семейство функций).

Дифференциальное уравнение порядка выше первого можно преобразовать в систему уравнений первого порядка, в которой число уравнений равно порядку исходного дифференциального уравнения.

Современные быстродействующие ЭВМ эффективно дают численное решение обыкновенных дифференциальных уравнений, не требуя получения его решения в аналитическом виде. Это позволило некоторым исследователям утверждать, что решение задачи получено, если её удалось свести к решению обыкновенного дифференциального уравнения.

Содержание

Терминология и классификация [ править | править код ]

Порядок дифференциального уравнения — наивысший порядок производных, входящих в него.

Если дифференциальное уравнение является многочленом относительно старшей производной, то степень этого многочлена называется степенью дифференциального уравнения. Так, например, уравнение ( y ″ ) 4 + y ′ + y 6 + x 7 = 0 <displaystyle (y»)^<4>+y’+y^<6>+x^<7>=0> является уравнением второго порядка, четвёртой степени [2] .

Решением (интегралом) дифференциального уравнения порядка n называется функция y(x) , имеющая на некотором интервале (a, b) производные y ′ ( x ) , y ″ ( x ) , . . . , y ( n ) ( x ) <displaystyle y'(x),y»(x). y^<(n)>(x)> до порядка n включительно и удовлетворяющая этому уравнению. Процесс решения дифференциального уравнения называется интегрированием. Задача об интегрировании дифференциального уравнения считается решённой, если нахождение неизвестной функции y ( x ) <displaystyle y(x)> удается привести к квадратуре, (т. е. к виду y = ∫ f ( x ) d x <displaystyle y=int f(x) dx> , где f ( x ) <displaystyle f(x)> — элементарная функция) независимо от того, выражается ли полученный интеграл в конечном виде через известные функции или нет.

Все дифференциальные уравнения можно разделить на обыкновенные (ОДУ), в которые входят только функции (и их производные) от одного аргумента, и уравнения с частными производными (УРЧП), в которых входящие функции зависят от многих переменных. Существуют также стохастические дифференциальные уравнения (СДУ), включающие случайные процессы.

В зависимости от комбинаций производных, функций, независимых переменных дифференциальные уравнения подразделяются на линейные и нелинейные, с постоянными или переменными коэффициентами, однородные или неоднородные. В связи с важностью приложений в отдельный класс выделены квазилинейные (линейные относительно старших производных) дифференциальные уравнения в частных производных [3] .

Важнейшим вопросом для дифференциальных уравнений является существование и единственность их решения. Разрешение этого вопроса дают теоремы существования и единственности, указывающие необходимые и достаточные для этого условия. Для обыкновенных дифференциальных уравнений такие условия были сформулированы Липшицем (1864). Для уравнений в частных производных соответствующая теорема была доказана С. В. Ковалевской (1874).

Решения дифференциальных уравнений подразделяются на общие и частные решения. Общие решения включают в себя неопределенные постоянные, а для уравнений в частных производных — произвольные функции от независимых переменных, которые могут быть уточнены из дополнительных условий интегрирования (начальных условий для обыкновенных дифференциальных уравнений, начальных и граничных условий для уравнений в частных производных). После определения вида указанных постоянных и неопределенных функций решения становятся частными.

Поиск решений обыкновенных дифференциальных уравнений привёл к установлению класса специальных функций — часто встречающихся в приложениях функций, не выражающихся через известные элементарные функции. Их свойства были подробно изучены, составлены таблицы значений, определены взаимные связи и т. д.

Развитие теории дифференциальных уравнений позволило в ряде случаев отказаться от требования непрерывности исследуемых функций и ввести обобщённые решения дифференциальных уравнений.