Ddr 400 что это

DDR SDRAM (от англ. Double Data Rate Synchronous Dynamic Random Access Memory — синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных) — тип компьютерной памяти, используемой в вычислительной технике в качестве оперативной и видеопамяти. Пришла на смену памяти типа SDRAM.

При использовании DDR SDRAM достигается удвоенная скорость работы, нежели в SDRAM, за счёт считывания команд и данных не только по фронту, как в SDRAM, но и по спаду тактового сигнала. За счёт этого удваивается скорость передачи данных без увеличения частоты тактового сигнала шины памяти. Таким образом, при работе DDR на частоте 100 МГц мы получим эффективную частоту 200 МГц (при сравнении с аналогом SDR SDRAM). В спецификации JEDEC [2] есть замечание, что использовать термин «МГц» в DDR некорректно, правильно указывать скорость «миллионов передач в секунду через один вывод данных».

Специфическим режимом работы модулей памяти является двухканальный режим.

Содержание

Описание [ править | править код ]

Микросхемы памяти DDR SDRAM выпускались в корпусах TSOP и (освоено позднее) корпусах типа BGA (FBGA), производятся по нормам 0,13 и 0,09-микронного техпроцесса:

  • Напряжение питания микросхем: 2,6 В ± 0,1 В.
  • Потребляемая мощность: 527 мВт.
  • Интерфейс ввода-вывода: SSTL_2.

Ширина шины памяти составляет 64 бита, то есть по шине за один такт одновременно передаётся 8 байт. В результате получаем следующую формулу для расчёта максимальной скорости передачи для заданного типа памяти: (тактовая частота шины памяти) x 2 (передача данных дважды за такт) x 8 (число байтов передающихся за один такт). Например, чтобы обеспечить передачу данных дважды за такт, используется специальная архитектура «2n Prefetch». Внутренняя шина данных имеет ширину в два раза больше внешней. При передаче данных сначала передаётся первая половина шины данных по фронту тактового сигнала, а затем вторая половина шины данных по спаду.

Помимо удвоенной передачи данных, DDR SDRAM имеет несколько других принципиальных отличий от простой памяти SDRAM. В основном, они являются технологическими. Например, был добавлен сигнал QDS, который располагается на печатной плате вместе с линиями данных. По нему происходит синхронизация при передаче данных. Если используется два модуля памяти, то данные от них приходят к контроллеру памяти с небольшой разницей из-за разного расстояния. Возникает проблема в выборе синхросигнала для их считывания, и использование QDS успешно это решает. Грубо говоря, если на материнской плате имеется 2 и более разъёмов для оперативной памяти, то ближний слот, будет ждать дальний слот.

JEDEC устанавливает стандарты для скоростей DDR SDRAM, разделённых на две части: первая для чипов памяти, а вторая для модулей памяти, на которых, собственно, и размещаются чипы памяти.

Чипы памяти [ править | править код ]

В состав каждого модуля DDR SDRAM входит несколько идентичных чипов DDR SDRAM. Для модулей без коррекции ошибок (ECC) их количество кратно 4, для модулей с ECC — формула 4+1.

Спецификация чипов памяти [ править | править код ]

  • DDR200: память типа DDR SDRAM, работающая на частоте 100 МГц
  • DDR266: память типа DDR SDRAM, работающая на частоте 133 МГц
  • DDR333: память типа DDR SDRAM, работающая на частоте 166 МГц
  • DDR400: память типа DDR SDRAM, работающая на частоте 200 МГц

Характеристики чипов [ править | править код ]

  • Ёмкость чипа (DRAM density). Записывается в мегабитах, например, 256 Мбит — чип ёмкостью 32 мегабайта.
  • Организация (DRAM organization). Записывается в виде 64M x 4, где 64M — это количество элементарных ячеек хранения (64 миллиона), а x4 (произносится «by four») — разрядность чипа, то есть разрядность каждой ячейки. Чипы DDR бывают x4 и x8, последние стоят дешевле в пересчёте на мегабайт ёмкости, но не позволяют использовать функции Chipkill[en] , Memory scrubbing[en] и IntelSingle-device data correction[en] .

Модули памяти [ править | править код ]

Модули DDR SDRAM выполнены в форм-факторе DIMM. На каждом модуле расположено несколько одинаковых чипов памяти и конфигурационный чип Serial presence detect [en] . На модулях регистровой (registered) памяти также располагаются регистровые чипы, буферизующие и усиливающие сигнал на шине, на модулях нерегистровой (небуферизованной, unbuffered) памяти их нет.

Характеристики модулей [ править | править код ]

  • Объём. Указывается в мегабайтах или гигабайтах.
  • Количество чипов (# of DRAM Devices). Кратно 8 для модулей без ECC, для модулей с ECC — кратно 9. Чипы могут располагаться на одной или обеих сторонах модуля. Максимальное умещающееся на DIMM количество — 36 (9×4).
  • Количество строк (рангов) (# of DRAM rows (ranks)).

Чипы, как видно из их характеристики, имеют 4- или 8-битную шину данных. Чтобы обеспечить более широкую полосу (например, DIMM требует 64 бита и 72 бита для памяти с ECC), чипы связываются в ранги. Ранг памяти имеет общую шину адреса и дополняющие друг друга линии данных. На одном модуле может размещаться несколько рангов. Но если нужно больше памяти, то добавлять ранги можно и дальше, установкой нескольких модулей на одной плате и используя тот же принцип: все ранги сидят на одной шине, только Chip select [en] разные — у каждого свой. Большое количество рангов электрически нагружает шину, точнее контроллер и чипы памяти, и замедляет их работу. Отсюда начали применять многоканальную архитектуру, которая позволяет также независимо обращаться к нескольким модулям.

  • Задержки (тайминги): CAS Latency (CL), Clock Cycle Time (tCK), Row Cycle Time (tRC), Refresh Row Cycle Time (tRFC), Row Active Time (tRAS).

Характеристики модулей и чипов, из которых они состоят, связаны.

Объём модуля равен произведению объёма одного чипа на число чипов. При использовании ECC это число дополнительно умножается на коэффициент 8/9, так как на каждый байт приходится один бит избыточности для контроля ошибок. Таким образом, один и тот же объём модуля памяти можно набрать большим числом (36) маленьких чипов или малым числом (9) чипов большего объёма.

Общая разрядность модуля равна произведению разрядности одного чипа на число чипов и равна произведению числа рангов на 64 (72) бита. Таким образом, увеличение числа чипов или использование чипов x8 вместо x4 ведёт к увеличению числа рангов модуля.

Пример: Варианты модуля 1Гб PC2100 Registered DDR SDRAM

Объём модуля Количество чипов Объём чипа Организация Количество строк (рангов)
1 Гб 36 256 Мбит 64М x 4 2
1 Гб 18 512 Мбит 64М x 8 2
1 Гб 18 512 Мбит 128М x 4 1

В данном примере сравниваются возможные компоновки модуля серверной памяти объёмом 1 Гб. Из представленных вариантов следует предпочесть первый или третий, так как они используют чипы x4, поддерживающие продвинутые методы исправления ошибок и защиты от сбоев. При необходимости использовать одноранговую память остаётся доступен только третий вариант, однако в зависимости от текущей стоимости чипов объёмом 256 Мбит и 512 Мбит он может оказаться дороже первого.

Спецификация модулей памяти [ править | править код ]

Название модуля Тип чипа Тактовая частота шины памяти, МГц Максимальная теоретическая пропускная способность, МБ/с
одноканальный режим двухканальный режим
PC1600* DDR200 100 1600 3200
PC2100* DDR266 133 2133 4267
PC2400 DDR300 150 2400 4800
PC2700* DDR333 166 2667 5333
PC3000 DDR366 183 3000 6000
PC3200* DDR400 200 3200 6400
PC3500 DDR433 217 3467 6933
PC3700 DDR466 233 3733 7467
PC4000 DDR500 250 4000 8000
PC4200 DDR533 267 4267 8533
PC5600 DDR700 350 5600 11200

Примечание 1: стандарты, помеченные символом «*», официально сертифицированы JEDEC. Остальные типы памяти не сертифицированы JEDEC, хотя их и выпускали многие производители памяти, а большинство выпускавшихся в последнее время материнских плат поддерживали данные типы памяти.

Примечание 2: выпускались модули памяти, работающие и на более высоких частотах (до 350 МГц, DDR700), но эти модули не пользовались большим спросом и выпускались в малом объёме, кроме того, они имели высокую цену [3] .

Читайте также:  Как отключить невидимку в одноклассниках в мобильной

Размеры модулей также стандартизированы JEDEC.

Надо заметить, что нет никакой разницы в архитектуре DDR SDRAM с различными частотами, например, между PC1600 (работает на частоте 100 МГц) и PC2100 (работает на частоте 133 МГц). Просто стандарт говорит о том, на какой гарантированной частоте работает данный модуль.

Модули памяти DDR SDRAM можно отличить от обычной SDRAM по числу выводов (184 вывода у модулей DDR против 168 выводов у модулей с обычной SDRAM) и по ключу (вырезы в области контактных площадок) — у SDRAM два, у DDR — один. Согласно JEDEC, модули DDR400 работают при напряжении питания 2,6 В, а все более медленные — при напряжении 2,5 В. Некоторые скоростные модули для достижения высоких частот работают при больших напряжениях, до 2,9 В.

Большинство последних чипсетов с поддержкой DDR позволяли использовать модули DDR SDRAM в двухканальном, а некоторые чипсеты и в четырёхканальном режиме. Данный метод позволяет увеличить в 2 или 4 раза соответственно теоретическую пропускную способность шины памяти. Для работы памяти в двухканальном режиме требуются 2 (или 4) модуля памяти. Рекомендуется использовать модули, работающие на одной частоте, имеющие одинаковый объём и временны́е задержки (латентность, тайминги). Ещё лучше использовать абсолютно одинаковые модули.

Сейчас модули DDR практически вытеснены модулями типов DDR2 и DDR3, которые в результате некоторых изменений в архитектуре позволяют получить бо́льшую пропускную способность подсистемы памяти. Ранее главным конкурентом DDR SDRAM являлась память типа RDRAM (Rambus), однако ввиду наличия некоторых недостатков со временем была практически вытеснена с рынка.

Средняя цена по России, руб: 988

Общие характеристики

Производитель

Фирма, спроектировавшая данный модуль памяти.

NCP Тип памяти

DDR (Double Data Rate — удвоенная скорость передачи данных) – современный тип оперативной памяти, пришедший на смену SDRAM (Synchronous Dynamic Random Access Memory — синхронная динамическая память с произвольным доступом). Сейчас память SDRAM считается сильно устаревшей.

На сегодняшний день самым распространенным типом оперативной памяти для ПК является представитель третьего поколения DDR — DDR3.

На смену DDR3 постепенно приходят модули памяти DDR4, но большого распространения они пока не получили из-за высокой стоимости самих планок памяти и материнских плат для них. Теоретическая скорость передачи данных у модулей памяти DDR4 в два раза выше чем у DDR3, но на практике DDR4 пока не сильно выигрывает у DDR3.

DDR — самый первый вид оперативной памяти с удвоенной скоростью передачи данных. Данная технология является устаревшей.

DDR2 — следующее поколение оперативной памяти типа DDR. Может работать на более высокой частоте по сравнению с первой версией DDR.

Совместимость между различными представителями DDR (DDR, DDR2, DDR3, DDR4) отсутствует.

DDR3L — DDR3 с пониженным энергопотреблением (1,35В, вместо 1,5 у стандартных). Совместима с DDR3.

Сейчас иногда еще можно встретить сильно устаревшую память RDRAM.

DDR Форм-фактор

DIMM (Dual In-line Memory Module, двухсторонний модуль памяти) – форм-фактор модуля памяти, пришедший на смену SIMM (Single In-line Memory Module, односторонний модуль памяти). Основным преимуществом DIMM перед SIMM является ускорение передачи данных. DIMM также имеет функцию обнаружения и исправления ошибок, что обеспечивает более надежную передачу данных.

SO-DIMM (или SODIMM), MicroDIMM, MiniDIMM — форм-факторы памяти, используемые в портативных устройствах (ноутбуках, планшетах).

FB-DIMM (Fully Buffered, полностью буферизованный) – серверная оперативная память. Обеспечивает повышенную скорость и точность передачи данных. Несовместима с обычными небуферизованными модулями памяти DIMM.

LRDIMM (load-reduced dual inline memory module, двухсторонний модуль памяти с уменьшенной нагрузкой) – серверная оперативная память, которая устанавливается в дата-центрах и серверах с большой нагрузкой.

RIMM — устаревший форм-фактор модулей памяти для ПК.

DIMM Количество модулей памяти

Иногда в комплекте могут продаваться сразу несколько одинаковых модулей памяти.

1 Размер одного модуля памяти, Мб

Количество памяти на каждом модуле, которая доступна для записи информации.

256 Тактовая частота, МГц

Тактовая частота показывает какое количество операций может совершить модуль памяти за 1 секунду. Соответственно, чем выше данный показатель, тем память работает быстрее. Для всех моделей памяти DDR: DDR, DDR2, DDR3, DDR4 значение таковой частоты указывается удвоенным.

Дополнительные характеристики

Пропускная способность, Гб/с

Показывает какое количество данных может быть передано или получено за 1 секунду.

3200 Поддержка ECC

EСС (Error Checking and Correction – проверка и исправление ошибок) – это технология, разработанная для нахождения ошибок и их исправления (если ошибок не слишком много). Модули памяти с ECC, как правило, устанавливают на серверах и в дата-центрах, поскольку при небольшой нагрузке (среднестатистического ПК) ошибки практически не возникают. Модули памяти с ECC и без ECC несовместимы.

нет Буферизованная (Регистровая) память

Буфер (регистр) повышает надежность хранения и передачи информации, но несколько снижает производительность. Буферизованная (регистровая) память устанавливается, как правило, на серверах, поскольку при незначительной нагрузке, такой, как на среднестатистическом ПК буфер только замедляет его работу. Буферизованные и небуферизованные модули памяти несовместимы.

нет Низкопрофильная

Высота модуля памяти уменьшена до 25мм.

нет Количество контактов

Количество контактов модуля памяти с гнездом материнской платы.

184 Число чипов на один модуль памяти

Количество чипов (микросхем), предназначенных для хранения памяти, находящихся на одном модуле.

4 Напряжение, В

Напряжение, которое требуется для питания модуля памяти. Для совместимости материнская плата должна поддерживать данное напряжение.

1.5 Наличие радиатора

Наличие радиатора повышает теплоотведение, препятствуя перегреву оперативной памяти. Его наличие крайне желательно для модулей памяти, работающих на высоких частотах (больше 1333 МГц).

нет CAS Latency (CL), тактов

CAS-latency (column address strobe latency – задержка на получение столбца) — время ожидания (циклов) между запросом на получение данных из ячейки памяти и временем, когда она начнет считываться. CAS-latency (CL или CAS-задежка) является важной характеристикой быстродействия оперативной памяти. Чем она ниже, тем память работает быстрее. Возможно также дробное значение данного показателя (например: 2.5).

10 Упаковка чипов

Расположение чипов (микросхем) памяти на планке. Чипы могут располагаться с одной или с двух сторон.

не указана tRCD, тактов

tRCD (RAS to CAS Delay) – задержка (в циклах) между сигналами, определяющими адрес строки (RAS — Row Address Strobe) и адрес столбца CAS (Column Address Strobe). Чем она ниже, тем быстрее работает оперативная память.

10 tRP, тактов

tRP (Row Address Strobe Precharge Time) — время (в циклах), необходимое для закрытия строки памяти и открытия новой строки. Чем оно меньше, тем быстрее работает модуль памяти.

10 tRAS, тактов

tRAS (Activate to Precharge Delay) — задержка (в циклах) между командой активации (RAS) и закрытия строки памяти. Чем она меньше, тем быстрее работает модуль памяти.

30 Количество ранков

Ранк — область памяти, состоящая из всех или только части чипов (микросхем) данного модуля памяти. Некоторые материнские платы (в основном серверные) имеют ограничение на количество ранков, поэтому модули памяти с ранком равным единице ценятся немного больше.

4 Совместимость

Совместимость с материнскими платами или компьютерами, заявленная производителем данного модуля памяти. Полный список совместимых моделей почти всегда гораздо шире.

Мы продолжаем цикл статей, посвященный изучению важнейших характеристик модулей памяти DDR на низком уровне с помощью универсального тестового пакета RightMark Memory Analyzer. Очередной экземпляр, попавший в поле нашего исследования — 1-ГБ пара модулей (специально «подогнанных друг к другу» для работы в двухканальном режиме) DDR-400 серии +XBL (eXtreme Bandwidth and Latency), предназначенной для оверклокеров, энтузиастов и геймеров. Отличительная особенность этой серии — низкие задержки при работе в родном, официальном режиме DDR-400 (2-2-2-5), а также способность работать при частотах вплоть до 266 МГц, т.е. в неофициальных режимах DDR-433, DDR-466, DDR-500 и DDR-533.Информация о производителе модуля

Читайте также:  Bitrix modules main include php

Производитель модуля: Patriot Memory (подразделение PDP Systems, Inc.)
Производитель микросхем модуля: неизвестен
Сайт производителя модуля: www.patriotmem.comВнешний вид модуля

Фото модуля памяти

Внешний вид модулей памяти, покрытых обычным алюминиевым теплоотводом красного цвета, вполне привычен для модулей памяти DDR Patriot.Part Number модуля

Руководство по расшифровке Part Number модулей памяти DDR серии +XBL на сайте производителя отсутствует. В кратком техническом описании (datasheet) модулей с Part Number PDC1G3200+XBLK указывается, что продукт представляет собой комплект из двух «подогнанных» друг к другу модулей DDR-400 суммарным объемом 1ГБ, способных функционировать в широком интервале частот — от 200 МГц (DDR-400, PC3200) до 266 МГц (DDR-533, PC4200) и в номинальном режиме DDR-400 характеризуются очень низкими задержками — 2-2-2-5. Рекомендуемые схемы таймингов и рабочие напряжения для каждого из режимов приведены ниже в таблице. Производитель отмечает, что модули проходят 100% тестирование в каждом из указанных режимов при указанных условиях, т.е. фактически гарантирует стабильность их работы во всех перечисленных режимах.

Скоростной режим Тайминги Питающее напряжение PC3200 (DDR-400) 2-2-2-5 2.6 — 2.7V PC3500 (DDR-433) 2-3-3-6 2.6 — 2.7V PC3700 (DDR-466) 2-3-3-6 2.7 — 2.8V PC4000 (DDR-500) 2.5-3-3-7 2.75 — 2.85V PC4200 (DDR-533) 3-4-4-8 2.75 — 2.85V
Параметр Байты Значение Расшифровка
Фундаментальный тип памяти 2 07h DDR SDRAM
Общее количество адресных линий строки модуля 3 0Dh 13 (RA0-RA12)
Общее количество адресных линий столбца модуля 4 0Ah 10 (CA0-CA9)
Общее количество физических банков модуля памяти 5 02h 2 физических банка
Внешняя шина данных модуля памяти 6, 7 40h, 00h 64 бит
Уровень питающего напряжения 8 04h SSTL 2.5V
Минимальная длительность периода синхросигнала (tCK) при максимальной задержке CAS# (CL X) 9 50h 5.0 нс (200.0 МГц)
Тип конфигурации модуля 11 00h Non-ECC
Тип и способ регенерации данных 12 82h 7.8125 мс — 0.5x сокращенная саморегенерация
Ширина внешнего интерфейса шины данных (тип организации) используемых микросхем памяти 13 08h x8
Ширина внешнего интерфейса шины данных (тип организации) используемых микросхем памяти ECC-модуля 14 00h Не определено
Длительность передаваемых пакетов (BL) 16 0Eh BL = 2, 4, 8
Количество логических банков каждой микросхемы в модуле 17 04h 4
Поддерживаемые длительности задержки CAS# (CL) 18 04h CL = 2.0
Минимальная длительность периода синхросигнала (tCK) при уменьшенной задержке CAS# (CL X-0.5) 23 50h 5.0 нс (200.0 МГц)
Минимальная длительность периода синхросигнала (tCK) при уменьшенной задержке CAS# (CL X-1.0) 25 00h Не определено
Минимальное время подзарядки данных в строке (tRP) 27 28h 10.0 нс
2, CL = 2.0
Минимальная задержка между активизацией соседних строк (tRRD) 28 28h 10.0 нс
2, CL = 2.0
Минимальная задержка между RAS# и CAS# (tRCD) 29 28h 10.0 нс
2, CL = 2.0
Минимальная длительность импульса сигнала RAS# (tRAS) 30 19h 25.0 нс
5, CL = 2.0
Емкость одного физического банка модуля памяти 31 40h 256 МБ
Минимальное время цикла строки (tRC) 41 37h 55.0 нс
11, CL = 2.0
Период между командами саморегенерации (tRFC) 42 41h 65.0 нс
13, CL = 2.0
Максимальная длительность периода синхросигнала (tCKmax) 43 28h 10.0 нс
Номер ревизии SPD 62 00h Не определено
Контрольная сумма байт 0-62 63 F4h 244 (верно)
Идентификационный код производителя по JEDEC (показаны только первые значимые байты) 64-71 7Fh, 7Fh,
7Fh, 7Fh,
02h
PDP Systems
Part Number модуля 73-90 01h, 64h,
08h
Неверно
Дата изготовления модуля 93-94 00h, 00h Не определено
Серийный номер модуля 95-98 00h, 00h,
00h, 00h
Не определено

Содержимое микросхемы SPD выглядит несколько необычно. По данным байта 18, модули поддерживают всего одно значение задержки CAS# = 2. Этому, главному значению задержки сигнала CAS# (CL X), соответствует период синхросигнала 5 нс, т.е. функционирование модулей в режиме DDR-400. Схема таймингов для этого случая совпадает с указанной в техническом описании — 2-2-2-5, что по идее должно гарантировать выставление именно этих таймингов по умолчанию BIOS-ами большинства материнских плат. Тем не менее, в байте 23 по непонятной причине прописано и второе, уменьшенное значение задержки CAS# (CL X-0.5, т.е. по идее, неофициальная для DDR величина tCL = 1.5), которому, тем не менее, соответствует тот же самый период синхросигнала 5 нс, т.е. режим DDR-400. Схема таймингов для второго случая, если бы она поддерживалась стандартом, записывалась бы как 1.5-2-2-5. К слову об отклонении от стандарта, среди прочих особенностей содержимого SPD рассматриваемых модулей можно отметить неопределенный номер ревизии SPD «0.0», а также отсутствие данных о Part Number модуля (вместо него приводится некая последовательность байтов 01h, 64h и 08h, непереводимая в текстовый вид), а также их дате изготовления и серийном номере. Код производителя (PDP Systems), тем не менее, указан верно.Конфигурации тестовых стендов

Тестовый стенд №1

  • Процессор: AMD Athlon 64 4000+, 2.4 ГГц (ClawHammer, 1 МБ L2)
  • Чипсет: NVIDIA nForce4 SLI X16
  • Материнская плата: ASUS A8N32SLI Deluxe, версия BIOS 0502 от 10/06/2005
  • Память: 2×512 МБ Patriot DDR-400+XBLK (в режиме DDR-400)

Тестовый стенд №2

  • Процессор: AMD Athlon 64 4000+, 2.4 ГГц (ClawHammer, 1 МБ L2)
  • Чипсет: NVIDIA nForce4 SLI X16
  • Материнская плата: ASUS A8N32SLI Deluxe, версия BIOS 0502 от 10/06/2005
  • Память: 2×512 МБ Corsair XMS PC3200, DDR-400

Тестовый стенд №3

  • Процессор: AMD Athlon 64 3500+, 2.0 — 2.2 ГГц (Venice, 512 КБ L2)
  • Чипсет: ATI Radeon Xpress 200 CrossFire
  • Материнская плата: ECS RD480-A939, версия BIOS 1.1b от 13/02/2006
  • Память: 2×512 МБ Patriot DDR-400+XBLK (в режиме «DDR-500»)

Тестовый стенд №4

  • Процессор: AMD Athlon 64 FX-57, 2.0 — 2.8 ГГц (San Diego, 1 МБ L2)
  • Чипсет: ATI Radeon Xpress 200 CrossFire
  • Материнская плата: ECS RD480-A939, версия BIOS 1.1b от 13/02/2006
  • Память: 2×512 МБ Patriot DDR-400+XBLK (в режиме «DDR-500»)

Результаты тестирования

Тесты в режиме DDR-400

Первая серия тестов проводилась в стандартном скоростом режиме DDR-400 (стенд №1). Для сопоставления полученных результатов с чем-либо мы провели те же самые тесты с использованием давно имеющейся в распоряжении нашей тестовой лаборатории пары 512-МБ модулей Corsair DDR-400, обладающих столь же низкими таймингами 2-2-2-5 (стенд №2).

Параметр Стенд 1 Стенд 2
Тайминги 2-2-2-5 2-2-2-5
Средняя ПСП на чтение, МБ/с 4385 4387
Средняя ПСП на запись, МБ/с 2562 2541
Макс. ПСП на чтение, МБ/с 6399 6415
Макс. ПСП на запись, МБ/с 6196 6194
Минимальная латентность псевдослучайного доступа, нс 31.4 31.5
Максимальная латентность псевдослучайного доступа, нс 35.2 35.3
Минимальная латентность случайного доступа * , нс 57.9 57.9
Максимальная латентность случайного доступа * , нс 62.1 62.1

Результаты тестов достаточно очевидны и не нуждаются в пояснениях: модули DDR-400 серии +XBLK от Patriot в стандартном режиме DDR-400 обладают отличными скоростными характеристиками. По многим параметрам они не уступают, если и вовсе не оказываются идентичными высокоскоростным модулям Corsair DDR-400 с таймингами 2-2-2-5.

«Тесты стабильности», т.е. тесты модулей в более экстремальных условиях — с «разгоном по таймингам» в данном случае не проводим по той простой причине, что значения таймингов 2-2-2-5 на платформе AMD Athlon 64 далее уменьшать просто некуда. Вместо этого, переходим к рассмотрению результатов гораздо более интересной серии тестов в режиме «DDR-500».

Тесты в режиме «DDR-500»

Мы не зря взяли название этого режима в кавычки — во-первых, строгого соответствия ему (т.е. функционированию модулей памяти при 250 МГц) здесь нет, во-вторых, частота памяти зависит от частоты процессора.

Какова причина проведения этих тестов? Как известно, последняя ревизия «E» процессоров AMD Athlon 64/FX поддерживает новые, «неофициальные» (они официально не указаны в документации AMD, по всей вероятности, поскольку сами режимы не утверждены стандартом JEDEC) режимы функционирования подсистемы памяти — с предельной частотой в 233 и 250 МГц, которые можно задать в BIOS-ах недавних моделей материнских плат, например, ECS RD480-A939. «Предельной» именно потому, что реальная частота зависит от частоты процессора/контроллера памяти (она получается делением ее на некоторый целый делитель) и, как правило, всегда оказывается меньшей по сравнению с этим пределом (MemClk limit).

Читайте также:  Уровень мирового океана карта

Таким образом, с последней ревизией процессоров AMD и надлежащей поддержкой со стороны BIOS материнских плат мы теперь можем реально использовать более скоростную, нестандартную память DDR «по ее прямому назначению», не прибегая при этом к разгону остальных компонентов системы посредством повышения частоты FSB. Поскольку рассматриваемые модули поддерживают частоты вплоть до 266 МГц (DDR-533), мы решили незамедлительно воспользоваться ими для тестирования новых режимов работы двухканального контроллера памяти AMD64, интегрированного в процессоры AMD Athlon 64/FX.

Итак, в теории все выглядит хорошо, однако на деле оно оказывается не так, как того можно было бы ожидать. Проблема заключается в уже отмеченной выше неизбежной установке частоты памяти в зависимости от частоты процессора путем ее деления на некоторую целую константу. С одной стороны, это приводит к непостоянству частоты памяти во времени при динамическом изменении частоты процессора с помощью удобной, нужной и полезной технологии AMD Cool`n’Quiet, либо (если по каким-либо причинам эта технология не используется) просто к зависимости частоты памяти от данной конкретной модели процессора, рассчитанного на функционирование при данной конкретной максимальной частоте. С другой стороны (что более важно), тесты показывают, что в неофициальном режиме «DDR-500» процессор зачастую выбирает не тот делитель, который наиболее близко соответствовал бы заданному пределу, а больший, что соответствует меньшей частоте памяти. Все это отражено в приведенной ниже таблице с результатами.

Параметр Стенд 3 Стенд 4
Частота процессора, МГц 2200 2000 2800 2400 2200 2000
Ожидаемая частота памяти, МГц
(делитель частоты памяти)
244
(/9)
250
(/8)
233
(/12)
240
(/10)
244
(/9)
250
(/8)
Фактическая частота памяти, МГц
(делитель частоты памяти),
по результатам тестов
220
(/10)
222
(/9)
233
(/12)
240
(/10)
220
(/10)
222
(/9)
Тайминги 2.5-3-3-8 2.5-3-3-8 2.5-3-3-8 2.5-3-3-8 2.5-3-3-8 2.5-3-3-8
Средняя ПСП на чтение, МБ/с 3730 3809 4166 3922 3651 3743
Средняя ПСП на запись, МБ/с 2838 2719 3056 2992 2749 2921
Макс. ПСП на чтение, МБ/с 6915 7029 7193 7331 6695 6909
Макс. ПСП на запись, МБ/с 6425 5825 7088 6902 6323 5755
Минимальная латентность псевдослучайного доступа, нс 25.7 25.3 23.7 24.4 26.1 25.6
Максимальная латентность псевдослучайного доступа, нс 29.8 29.3 27.0 28.4 30.2 29.6
Минимальная латентность случайного доступа * , нс 63.7 61.8 58.4 60.0 64.5 62.5
Максимальная латентность случайного доступа * , нс 68.1 64.6 62.0 63.7 69.0 65.3

Рассмотрим, для начала, результаты тестов на процессоре AMD Athlon 64 3500+ (стенд №3). В штатном частотном режиме (частота 2.2 ГГц) ожидаемая частота памяти могла бы составлять 244.4 (2200 / 9) МГц, реально же выбирается больший делитель (/10), снижающий ее частоту до 220 МГц (как если бы она была ограничена режимом DDR-466 — кстати, тесты, проведенные в этом режиме ограничения частоты, действительно оказались аналогичными). Подтверждением этого является, в частности, величина максимальной реальной ПСП на чтение, составляющая 6915 МБ/с, тогда как теоретический предел 244-МГц шины памяти составляет 7820 МБ/с. Максимальная теоретическая ПСП 220-МГц шины памяти, равная 7040 МБ/с, оказывается гораздо ближе к наблюдаемой величине, т.е. в этом тесте наблюдается 98% эффективность утилизации шины памяти, вполне типичная для этого класса платформ.

Аналогичная картина наблюдается при понижении частоты процессора до 2 ГГц. Ожидаемая частота памяти в этом случае вообще могла бы оказаться предельной — 250 (2000 / 8) МГц, тем не менее, и здесь выбирается больший делитель (/9), вновь ближе соответствующий режиму DDR-466, нежели DDR-500 — реальная частота памяти оказывается равной 222.2 МГц. Как мы видим, это сопровождается некоторым дальнейшим увеличением максимальной реальной ПСП на чтение до 7029 МБ/с.

Переходим к результатам тестов с участием процессора Athlon 64 FX-57 (стенд №4), позволяющего использовать гораздо более широкий частотный диапазон. Штатный режим (частота 2800 МГц) позволяет достичь несколько большую частоту памяти по сравнению с тем, что мы видели выше. Более того, на этот раз действительное значение частоты совпало с ожидаемым — 233.3 МГц (2800 / 12). Максимальная реальная ПСП в этом тесте составила 7193 МБ/с, т.е. примерно 96% от теоретического максимума (7467 МБ/с).

Еще большую частоту памяти нам удалось достичь при понижении частоты процессора до 2.4 ГГц. И вновь ожидаемая частота памяти (240 МГц = 2400 / 10) совпала с реально наблюдаемой, которая проявила себя в виде еще большей максимальной реальной ПСП, равной 7331 МБ/с. Теоретический предел ПСП для 240 МГц составляет 7680 МБ/с, т.е. в этом тесте эффективность утилизации шины памяти составляет примерно 95.5%. Надо заметить, она несколько падает по мере увеличения частоты памяти, что, возможно, отражает реальный предел эффективности памяти DDR как таковой.

Дальнейшее понижение частоты процессора Athlon 64 FX-57 до 2200 и, далее, 2000 МГц, приводит к результатам, аналогичным тем, что мы наблюдали выше при исследовании процессора Athlon 64 3500+ (единственная разница, пожалуй, заключается в том, что на Athlon 64 FX-57 при этих частотах максимальная реальная ПСП, по не совсем понятным причинам, оказывается несколько хуже). А именно, устанавливаются значительно меньшие частоты памяти — 220 и 222 МГц, по сравнению с ожидаемыми 244 и 250 МГц, соответственно. Складывается такое впечатление, что установка лимита частоты памяти в 250 МГц в настройках контроллера памяти AMD64 на самом деле ограничивает частоту памяти на уровне 240 МГц — именно такой частотный предел нам удалось достичь в реальных условиях.Итоги

Исследованные модули памяти Patriot DDR-400+XBLK можно считать типичными высокоскоростными модулями DDR на сегодняшний день, в связи с доступностью топовых 2-ГБ высокоскоростных модулей — уже среднего объема, не уступающих по своим скоростным характеристикам давно известной, аналогичной 1-ГБ паре модулей Corsair DDR-400.

В то же время, в отличие от последних, для Patriot DDR-400+XBLK производителем заявлена поддержка более высокоскоростных режимов — от DDR-433 до DDR-533 включительно, которые нам отчасти удалось испытать в настоящем исследовании. Поскольку для этого испытания мы не прибегали к помощи разгона всех компонентов системы по частоте шины, а использовали новые, неофициальные режимы работы интегрированного контроллера памяти последней ревизии «E» процессоров AMD Athlon 64/FX, формально позволяющие использовать частоты памяти до 250 МГц, скажем несколько заключительных слов и о результатах этого исследования.

Итак, модули Patriot DDR-400+XBLK при повышенном напряжении (2.75V) действительно способны устойчиво функционировать при частотах до 240 МГц (более высокие частоты просто не проверялись), достигая при этом несколько меньшую в сравнении с режимом DDR-400, но все равно весьма высокую (порядка 95%) эффективность утилизации пропускной способности шины памяти. Тем не менее, несколько разочаровывает поведение самого контроллера памяти процессоров AMD64, который в ряде случаев использует большие, чем это нужно, делители частоты памяти. В связи с этим, реально наблюдаемая частота памяти находится в интервале примерно от 220 до 240 МГц, в зависимости от частоты процессора, но никак «не дотягивает» до положенных ей и формально возможных 250 МГц.

В то же время, поскольку использование нестандартных делителей частоты памяти все же относится к «твикингу» (использованию недокументированных функций), то в реальности оно чаще всего остается уделом энтузиастов и сочетается с классическим разгоном «по шине». И здесь новые делители действительно здорово помогают — например, в случае со старшими процессорами, для которых рассчитывать на существенный разгон не приходится, так что элитная память остается «недоразогнанной». В таком случае, выбрав больший частотный предел (меньший делитель), можно дополнительно разогнать память и с большой вероятностью выбрать без остатка «запас прочности» даже у самых удачных модулей (причем агрессивные делители, соответствующие на номинальной частоте 250 МГц, в таком случае как раз и не нужны).