Доверительный интервал для математического ожидания нормальной выборки

Решив полученное уравнение относительно , найдем критическую точку:

в которой производная отрицательна. Следовательно, — точка максимума и, значит, ее надо принять в качестве наибольшего правдоподобия неизвестной вероятности биномиального распределения.

Вопросы для самоконтроля

  1. Какая оценка называется точечной?
  2. Какие точечные оценки генеральных числовых характеристик вы знаете?
  3. Чем определяется интервальная оценка?
  4. Надежность оценки и другое ее название.
  5. На чем основано нахождение доверительного интервала для оценки математического ожидания?
  6. Каким образом оценивают истинное значение измеряемой величины?
  7. Точечная и интервальная оценка вероятности биномиального распределения.
  8. В чем суть метода наибольшего правдоподобия?

I 331. Игральная кость подбрасывается 300 раз. Какова вероятность того, что относительная частота появления шести очков на верхней грани кости отклонится от вероятности появления события в одном испытании по абсолютной величине не более чем на 0,05?

332. Сколько раз надо подбросить монету, чтобы с вероятностью 0,95 можно было ожидать, что относительная частота появления "герба" отклонится от вероятности этого события по абсолютной величине не более чем на 0,1?

333. Случайная величина имеет нормальное распределение с известным средним квадратическим отклонением . Найдите доверительные интервалы для оценки неизвестного математического ожидания по выборочным средним , если объем выборки и задана надежность оценки .

334. Исследовалось время безотказной работы 50 лазерных принтеров. Из априорных наблюдений известно, что среднее квадратическое отклонение времени безотказной работы ч. По результатам исследований получено среднее время безотказной работы ч. Постройте 90%-й доверительный интервал для среднего времени безотказной работы.

335. Количественный признак генеральной совокупности распределен нормально. По выборке объема найдено "исправленное" среднее квадратическое отклонение . Найдите доверительный интервал, покрывающий генеральное среднее квадратическое отклонение с надежностью .

336. Произведено 16 измерений одним прибором некоторой физической величины, причем исправленное среднее квадратическое отклонение случайных ошибок измерений оказалось равным 0,7. Найдите интервал ошибок прибора с надежностью 0,99. Предполагается, что ошибки измерений распределены нормально.

II 337. Время (в минутах) обслуживания клиентов в железнодорожной кассе представлено выборкой: 2,0; 1,5; 1,0; 1,0; 1,25; 3,5; 3,0; 3,0; 3.75; 3,7; 4,0; 6,0; 7,0; 1,5; 8,0; 3,5; 5,0; 3,5; 14,0; 12,0; 15,1; 18,0; 18,5; 17,0. Определите процент клиентов, время обслуживания которых более 12 минут и менее 5 минут.

338. Из генеральной совокупности извлечена выборка объема :

-0,4 -0,2 -0,1 0,2 0,5 0,7 1 1,2 1,6
1 3 2 1 1 1 2 1 2 2

Оцените с надежностью 0,9 математическое ожидание нормально распределенного признака генеральной совокупности с помощью доверительного интервала.

III 339. Результаты исследования длительности оборота оборотных средств торговых фирм города (в днях) представлены в группированном виде:

24-33 33-42 42-51 51-60 60-69 69-78 78-87
1 4 9 18 10 6 2

Постройте доверительный интервал с надежностью 0,95 для средней длительности оборотных средств торговых фирм города при условии, что среднее квадратическое отклонение неизвестно (известно и равно 10 дням).

340. Найти методом наибольшего правдоподобия оценку параметра распределения Пуассона

Доверительный интервал для математического ожидания — это такой вычисленный по данным интервал, который с известной вероятностью содержит математическое ожидание генеральной совокупности. Естественной оценкой для математического ожидания является среднее арифметическое её наблюденных значений. Поэтому далее в течение урока мы будем пользоваться терминами "среднее", "среднее значение". В задачах рассчёта доверительного интервала чаще всего требуется ответ типа "Доверительный интервал [95%; 90%; 99%] среднего числа [величина в конкретной задаче] находится от [меньшее значение] до [большее значение]". С помощью доверительного интервала можно оценивать не только средние значения, но и удельный вес того или иного признака генеральной совокупности. Средние значения, дисперсия, стандартное отклонение и погрешность, через которые мы будем приходить к новым определениям и формулам, разобраны на уроке Характеристики выборки и генеральной совокупности.

Читайте также:  Тексты песен квин с переводом

Точечная и интервальная оценки среднего значения

Если среднее значение генеральной совокупности оценивается числом (точкой), то за оценку неизвестной средней величины генеральной совокупности принимается конкретное среднее, которое рассчитано по выборке наблюдений. В таком случае значение среднего выборки — случайной величины — не совпадает со средним значением генеральной совокупности. Поэтому, указывая среднее значение выборки, одновременно нужно указывать и ошибку выборки. В качестве меры ошибки выборки используется стандартная ошибка , которая выражена в тех же единицах измерения, что и среднее. Поэтому часто используется следующая запись: .

Если оценку среднего требуется связать с определённой вероятностью, то интересующий параметр генеральной совокупности нужно оценивать не одним числом, а интервалом. Доверительным интервалом называют интервал, в котором с определённой вероятностью P находится значение оцениваемого показателя генеральной совокупности. Доверительный интервал, в котором с вероятностью P = 1 — α находится случайная величина , рассчитывается следующим образом:

,

где — критическое значение стандартного нормального распределения для уровня значимости α = 1 — P , которое можно найти в приложении к практически любой книге по статистике.

На практике среднее значение генеральной совокупности и дисперсия не известны, поэтому дисперсия генеральной совокупности заменяется дисперсией выборки , а среднее генеральной совокупности — средним значением выборки . Таким образом, доверительный интервал в большинстве случаев рассчитывается так:

.

Формулу доверительного интервала можно использовать для оценки среднего генеральной совокупности, если

  • известно стандартное отклонение генеральной совокупности;
  • или стандартное отклонение генеральной совокупности не известно, но объём выборки — больше 30.

Среднее значение выборки является несмещённой оценкой среднего генеральной совокупности . В свою очередь, дисперсия выборки не является несмещённой оценкой дисперсии генеральной совокупности . Для получения несмещённой оценки дисперсии генеральной совокупности в формуле дисперсии выборки объём выборки n следует заменить на n-1.

Пример 1. Собрана информация из 100 случайно выбранных кафе в некотором городе о том, что среднее число работников в них составляет 10,5 со стандартным отклонением 4,6. Определить доверительный интервал 95% числа работников кафе.

,

где — критическое значение стандартного нормального распределения для уровня значимости α = 0,05 .

Таким образом, доверительный интервал 95% среднего числа работников кафе составил от 9,6 до 11,4.

Пример 2. Для случайной выборки из генеральной совокупности из 64 наблюдений вычислены следующие суммарные величины:

сумма значений в наблюдениях ,

сумма квадратов отклонения значений от среднего .

Вычислить доверительный интервал 95 % для математического ожидания.

вычислим стандартное отклонение:

,

вычислим среднее значение:

.

Подставляем значения в выражение для доверительного интервала:

.

где — критическое значение стандартного нормального распределения для уровня значимости α = 0,05 .

Читайте также:  Just cause 2 прохождение видео

.

Таким образом, доверительный интервал 95% для математического ожидания данной выборки составил от 7,484 до 11,266.

Пример 3. Для случайной выборки из генеральной совокупности из 100 наблюдений вычислено среднее значение 15,2 и стандартное отклонение 3,2. Вычислить доверительный интервал 95 % для математического ожидания, затем доверительный интервал 99 %. Если мощность выборки и её вариация остаются неизменными, а увеличивается доверительный коэффициент, то доверительный интервал сузится или расширится?

Подставляем данные значения в выражение для доверительного интервала:

.

где — критическое значение стандартного нормального распределения для уровня значимости α = 0,05 .

.

Таким образом, доверительный интервал 95% для среднего данной выборки составил от 14,57 до 15,82.

Вновь подставляем данные значения в выражение для доверительного интервала:

.

где — критическое значение стандартного нормального распределения для уровня значимости α = 0,01 .

.

Таким образом, доверительный интервал 99% для среднего данной выборки составил от 14,37 до 16,02.

Как видим, при увеличении доверительного коэффициента увеличивается также критическое значение стандартного нормального распределения, а, следовательно, начальная и конечная точки интервала расположены дальше от среднего, и, таким образом, доверительный интервал для математического ожидания увеличивается.

Точечная и интервальная оценки удельного веса

Удельный вес некоторого признака выборки можно интерпретировать как точечную оценку удельного веса p этого же признака в генеральной совокупности. Если же эту величину нужно связать с вероятностью, то следует рассчитать доверительный интервал удельного веса p признака в генеральной совокупности с вероятностью P = 1 — α :

.

Пример 4. В некотором городе два кандидата A и B претендуют на пост мэра. Случайным образом были опрошены 200 жителей города, из которых 46% ответили, что будут голосовать за кандидата A, 26% — за кандидата B и 28% не знают, за кого будут голосовать. Определить доверительный интервал 95% для удельного веса жителей города, поддерживающих кандидата A.

Таким образом, доверительный интервал 95% удельного веса горожан, поддерживающих кандидата A, составил от 0,391 до 0,529.

Пример 5. Чтобы проверить отношение покупателей к новому квасу, проведён опрос случайной выборки в 50 человек. Результаты обобщены в следующей таблице (0 — не понравился, 1 — понравился, 2 — нет ответа):

1 1 2
1 2
1
1 1
2 1
1 1
2 2 1
1 2
1 1
1 1

Найти доверительный интервал 95 % удельного веса покупателей, которым новый квас не понравился.

Найдём удельный вес указанных покупателей в выборке: 29/50 = 0,58 . Таким образом, , . Мощность выборки известна ( n = 50 ). Критическое значение стандартного нормального распределения для уровня значимости α = 0,05 равно 1,96. Подставляем имеющиеся показатели в выражение интервала для удельного веса:

Таким образом, доверительный интервал 95% удельного веса покупателей, которым новый квас не понравился, составил от 0,45 до 0,71.

Доверительные интервалы для оценки математического ожидания нормального распределения при известном σ

Пусть количественный признак X генеральной совокупности распределен нормально, причем среднее квадратическое отклонение σ этого распределения известно. Требуется оценить неизвестное математическое ожидание а по выборочной средней . Поставим своей задачей найти доверительные интервалы, покрывающие параметр а с надежностью γ.

Будем рассматривать выборочную среднюю как случайную величину(изменяется от выборки к выборке) и выборочные значения признаках1, x2, . хn — как одинаково распределенные независимые случайные величины Х1, Х2, . Хn (эти числа также изменяются от выборки к выборке). Другими словами, математическое ожидание каждой из этих величин равно а и среднее квадратическое отклонение — σ.

Читайте также:  Nvidia geforce gtx 580 asus

Примем без доказательства, что если случайная величина X распределена нормально, то выборочная средняя , найденная по независимым наблюдениям, также распределена нормально. Параметры распределения таковы (см. гл. VIII, § 9):

M()=a, .

Потребуем, чтобы выполнялось соотношение

Р(|Х — а| 30 можно вместо распределения Стьюдента пользоваться нормальным распределением.

Однако важно подчеркнуть, что для малых выборок (n 2 с k степенями свободы, то величина

(*)

распределена по закону Стьюдента с k степенями свободы. Пусть количественный признак X генеральной совокупности распределен нормально, причем М(Х), σ(Х)= σ. Если из этой совокупности извлекать выборки объема n и по ним находить выборочные средние, то можно доказать, что выборочная средняя распределена нормально, причем (см. гл. VIII, § 9)

, .

Тогда случайная величина

(**)

также имеет нормальное распределение как линейная функция нормального аргумента (см. гл.XII, § 10, замечание), причем М (Z) = 0, σ(Z)=l. Доказано, что случайные величины Z и

(***)

независимы (S 2 — исправленная выборочная дисперсия) и что величина V распределена по закону χ 2 с k = n1 степенями свободы.

Следовательно, подставив (**) и (***) в (*), получим величину

,

которая распределена по закону Стьюдента с k = n1 степенями свободы.

Доверительные интервалы для оценки среднего квадратического отклонения σ нормального распределения

Пусть количественный признак X генеральной совокупности распределен нормально. Требуется оценить неизвестное генеральное среднее квадратическое отклонение σ по «исправленному» выборочному среднему квадратическому отклонению s. Поставим перед собой задачу найти доверительные интервалы, покрывающие параметр σ с заданной надежностью γ.

Потребуем, чтобы выполнялось соотношение

Р(|σ-s| 2 (n1) 2 распределена по закону χ 2 с п-1 степенями свободы, поэтому квадратный корень из нее обозначают через χ.

Плотность распределения χ имеет вид (см. пояснение в конце параграфа)

. (**)

Это распределение не зависит от оцениваемого параметра σ, а зависит лишь от объема выборки п.

Преобразуем неравенство (*) так, чтобы оно приняло вид χ1 1, то неравенство (*) примет вид (учитывая, что σ > 0)

0 1 могут быть найдены из уравнения

Практически для отыскания значений q > 1, соответствующих различным заданным n и γ, пользуются таблицей приложения 4.

Пример 2. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=10 найдено «исправленное» среднее квадратическое отклонение s=0,16. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение σ с надежностью 0,999.

Решение. По таблице приложения 4 по данным γ=0,999 и n =10 найдем q=1,80 (q>1). Искомый доверительный интервал таков:

0 2 с k = n1 степенями свободы, то ее плотность распределения (см. гл. XII, § 13)

,

.

Воспользуемся формулой (см. гл. XII, § 10)

,

чтобы найти распределение функции .Отсюда обратная функция

и .

Так как χ > 0, то , следовательно,

.

Выполнив элементарные преобразования и изменив обозначения (g(χ), заменим на R(χ, n)), окончательно получим

.