Предел дробной функции неопределенность 0 0

Неопределённость вида и вида — самые распространённые неопределённости, которые требуется раскрывать при решении пределов.

Большая часть задач на пределы, попадающихся студентам, как раз несут в себе такие неопределённости. Для их раскрытия или, точнее, ухода от неопределённостей существует несколько искусственных приёмов преобразования вида выражения под знаком предела. Эти приёмы следующие: почленное деление числителя и знаменателя на старшую степень переменной, домножение на сопряжённое выражение и разложение на множители для последующего сокращения с использованием решений квадратных уравнений и формул сокращённого умножения.

Неопределённость вида

Пример 1.Раскрыть неопределённость и найти предел .

Решение. Здесь старшая степень переменной n равна 2. Поэтому почленно делим числитель и знаменатель на :

.

Комментарий к правой части выражения. Стрелками и цифрами обозначено, к чему стремятся дроби после подстановки вместо n значения бесконечность. Здесь, как и в примере 2, степень n в знаменателя больше, чем в числителе, в результате чего вся дробь стремится к бесконечно малой величине или "супермалому числу".

Получаем ответ: предел данной функции при переменной, стремящейся к бесконечности, равен .

Пример 2.Раскрыть неопределённость и найти предел .

Решение. Здесь старшая степень переменной x равна 1. Поэтому почленно делим числитель и знаменатель на x:

.

Комментарий к ходу решения. В числителе загоняем "икс" под корень третьей степени, а чтобы его первоначальная степень (1) оставалась неизменной, присваиваем ему ту же степень, что и у корня, то есть 3. Стрелок и дополнительных чисел в этой записи уже нет, так что попробуйте мысленно, но по аналогии с предыдущим примером определить, к чему стремятся выражения в числителе и знаменателе после подстановки бесконечности вместо "икса".

Получили ответ: предел данной функции при переменной, стремящейся к бесконечности, равен нулю.

Неопределённость вида

Пример 3.Раскрыть неопределённость и найти предел .

Решение. В числителе — разность кубов. Разложим её на множители, применяя формулу сокращённого умножения из курса школьной математики:

.

В знаменателе — квадратный трёхчлен, который разложим на множители, решив квадратное уравнение (ещё раз ссылка на решение квадратных уравнений):

Запишем выражение, полученное в результате преобразований и найдём предел функции:

Пример 4. Раскрыть неопределённость и найти предел

Решение. Теорема о пределе частного здесь неприменима, поскольку

Поэтому тождественно преобразуем дробь: умножив числитель и знаменатель на двучлен, сопряжённый знаменателю, и сократим на x +1. Согласно следствию из теоремы 1, получим выражение, решая которое, находим искомый предел:

Пример 5. Раскрыть неопределённость и найти предел

Решение. Непосредственная подстановка значения x = 0 в заданную функцию приводит к неопределённости вида 0/0. Чтобы раскрыть её, выполним тождественные преобразования и получим в итоге искомый предел:

Пример 6. Вычислить

Решение: воспользуемся теоремами о пределах

Ответ: 11

Пример 7. Вычислить

Решение: в этом примере пределы числителя и знаменателя при равны 0:

; . Получили , следовательно, теорему о пределе частного применять нельзя.

Разложим числитель и знаменатель на множители, чтобы сократить дробь на общий множитель, стремящийся к нулю, и, следовательно, сделать возможным применение теоремы 3.

Квадратный трехчлен в числителе разложим по формуле , где x1 и х2 – корни трехчлена. Разложив на множители и знаменатель, сократим дробь на (x-2), затем применим теорему 3.

Ответ:

Пример 8. Вычислить

Решение: При числитель и знаменатель стремятся к бесконечности, поэтому при непосредственном применении теоремы 3 получаем выражение , которое представляет собой неопределенность. Для избавления от неопределенности такого вида следует разделить числитель и знаменатель на старшую степень аргумента. В данном примере нужно разделить на х:

Ответ:

Пример 9. Вычислить

Решение: При числитель и знаменатель стремятся к бесконечности. Разделим числитель и знаменатель на старшую степень аргумента, т.е. х 3 :

Ответ: 2

Пример 10. Вычислить

Решение: При числитель и знаменатель стремятся к бесконечности. Разделим числитель и знаменатель на старшую степень аргумента, т.е. х 5 :

=

числитель дроби стремится к 1, знаменатель к 0, поэтому дробь стремится к бесконечности.

Ответ:

Пример 11. Вычислить

Решение: При числитель и знаменатель стремятся к бесконечности. Разделим числитель и знаменатель на старшую степень аргумента, т.е. х 7 :

Ответ: 0

Производная.

Производной функции y = f(x) по аргументу xназывается предел отношения ее приращения y к приращению x аргумента x, когда приращение аргумента стремится к нулю: . Если этот предел конечен, то функция y = f(x)называется дифференцируемой в точке х. Если же этот предел есть , то говорят, что функция y = f(x) имеет в точке х бесконечную производную.

Производные основных элементарных функций:

1. (const)=0 9.

2. 10.

3. 11.

4. 12.

5. 13.

6. 14.

7.

8.

a)

б)

в)

г) , где

Пример 1. Найти производную функции

Решение: Если производную от второго слагаемого находим по правилу дифференцирования дроби, то первое слагаемое представляет собой сложную функцию, производная которой находится по формуле:

Читайте также:  Смещение дат 2000 1с

, где , тогда

При решении были использованы формулы: 1,2,10,а,в,г.

Ответ:

Пример 21. Найти производную функции

Решение: оба слагаемых – сложные функции, где для первого , , а для второго , , тогда

Ответ:

Приложения производной.

1. Скорость и ускорение

Пусть функция s(t) описывает положение объекта в некоторой системе координат в момент времени t. Тогда первая производная функции s(t) является мгновенной скоростью объекта:
v=s′=f′(t)
Вторая производная функции s(t) представляет собой мгновенное ускорение объекта:
w=v′=s′′=f′′(t)

2. Уравнение касательной
y−y0=f′(x0)(x−x0),
где (x0,y0) − координаты точки касания, f′(x0) − значение производной функции f(x) в точке касания.

3. Уравнение нормали
y−y0=−1f′(x0)(x−x0),

где (x0,y0) − координаты точки, в которой проведена нормаль, f′(x0) − значение производной функции f(x) в данной точке.

4. Возрастание и убывание функции
Если f′(x0)>0, то функция возрастает в точке x0. На рисунке ниже функция является возрастающей при x x2.
Если f′(x0) 0) для всех x в некотором интервале (a,x1] и убывает (f′(x) 0) для всех x из интервала [x2,b), то функция f(x) имеет локальный минимум в точке x2.

8. Второй достаточный признак существования экстремума
Если f′(x1)=0 и f′′(x1) 0, то функция f(x) имеет локальный минимум в точке x2.

9. Выпуклость функции
Функция f(x) является выпуклой вверх (или вогнутой) в точке x0, если производная f′(x) в этой точке убывает (промежуток x x3).

10. Достаточные условия выпуклости функции вверх и вниз
Если f′′(x0)>0, то функция f(x) выпукла вниз в точке x0.
Если f′′(x0)

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: "Что-то тут концом пахнет". 8516 — | 8100 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

В предыдущей статье мы рассказывали, как правильно вычислять пределы элементарных функций. Если же мы возьмем более сложные функции, то у нас в расчетах появятся выражения с неопределенным значением. Они и называются неопределенностями.

Выделяют следующие основные виды неопределенностей:

  1. Деление 0 на 0 " open=" 0 0 ;
  2. Деление одной бесконечности на другую " open=" ∞ ∞ ;

0 , возведенный в нулевую степень " open=" 0 0 ;

  • бесконечность, возведенная в нулевую степень " open=" ∞ 0 .
  • Мы перечислили все основные неопределенности. Другие выражения в различных условиях могут принимать конечные или бесконечные значения, следовательно, они не могут считаться неопределенностями.

    Раскрытие неопределенностей

    Раскрыть неопределенность можно:

      С помощью упрощения вида функции (использование формул сокращенного умножения, тригонометрических формул, дополнительное умножение на сопряженные выражения и последующее сокращение и др. );

    С помощью замечательных пределов;

    С помощью правила Лопиталя;

    Заменив одно бесконечно малое выражение на эквивалентное ему выражение (как правило, это действие выполняется с помощью таблицы бесконечно малых выражений).

    Всю информацию, представленную выше, можно наглядно представить в виде таблицы. С левой стороны в ней приводится вид неопределенности, с правой – подходящий метод ее раскрытия (нахождения предела). Этой таблицей очень удобно пользоваться при расчетах, связанных с нахождением пределов.

    Неопределенность Метод раскрытия неопределенности
    1. Деление 0 на 0 Преобразование и последующее упрощение выражения. Если выражение имеет вид sin ( k x ) k x или k x sin ( k x ) то нужно использовать первый замечательный предел. Если такое решение не подходит, пользуемся правилом Лопиталя или таблицей эквивалентных бесконечно малых выражений
    2. Деление бесконечности на бесконечность Преобразование и упрощение выражения либо использование правила Лопиталя
    3. Умножение нуля на бесконечность или нахождение разности между двумя бесконечностями Преобразование в " open=" 0 0 или " open=" ∞ ∞ с последующим применением правила Лопиталя
    4. Единица в степени бесконечности Использование второго замечательного предела
    5. Возведение нуля или бесконечности в нулевую степень Логарифмирование выражения с применением равенства lim x → x 0 ln ( f ( x ) ) = ln lim x → x 0 f ( x )

    Разберем пару задач. Эти примеры довольно простые: в них ответ получается сразу после подстановки значений и неопределенности при этом не возникает.

    Вычислите предел lim x → 1 x 3 + 3 x — 1 x 5 + 3 .

    Решение

    Выполняем подстановку значений и получаем ответ.

    lim x → 1 x 3 + 3 x — 1 x 5 + 3 = 1 3 + 3 · 1 — 1 1 5 + 3 = 3 4 = 3 2

    Ответ: lim x → 1 x 3 + 3 x — 1 x 5 + 3 = 3 2 .

    Вычислите предел lim x → 0 ( x 2 + 2 , 5 ) 1 x 2 .

    Решение

    У нас есть показательно степенная функция, в основание которой нужно подставить x = 0 .

    ( x 2 + 2 , 5 ) x = 0 = 0 2 + 2 , 5 = 2 , 5

    Значит, мы можем преобразовать предел в следующее выражение:

    lim x → 0 ( x 2 + 2 , 5 ) 1 x 2 = lim x → 0 2 , 5 1 x 2

    Теперь разберемся с показателем – степенной функцией 1 x 2 = x — 2 . Заглянем в таблицу пределов для степенных функций с показателем меньше нуля и получим следующее: lim x → 0 + 0 1 x 2 = lim x → 0 + 0 x — 2 = + ∞ и lim x → 0 + 0 1 x 2 = lim x → 0 + 0 x — 2 = + ∞

    Читайте также:  Выполните перенаправление udp портов

    Таким образом, можно записать, что lim x → 0 ( x 2 + 2 , 5 ) 1 x 2 = lim x → 0 2 , 5 1 x 2 = 2 , 5 + ∞ .

    Теперь берем таблицу пределов показательных функций с основаниями, большими 0 , и получаем:

    lim x → 0 ( x 2 + 2 , 5 ) 1 x 2 = lim x → 0 2 , 5 1 x 2 = 2 , 5 + ∞ = + ∞

    Ответ: lim x → 0 ( x 2 + 2 , 5 ) 1 x 2 = + ∞ .

    Далее мы приведем примеры решений задач на раскрытие неопределенностей с использованием метода преобразования. На практике выполнять это приходится довольно часто.

    Вычислите предел lim x → 1 x 2 — 1 x — 1 .

    Решение

    Выполняем подстановку значений.

    lim x → 1 x 2 — 1 x — 1 = 1 2 — 1 1 — 1 = " open=" 0 0

    В итоге у нас получилась неопределенность. Используем таблицу выше, чтобы выбрать метод решения. Там указано, что нужно выполнить упрощение выражения.

    lim x → 1 x 2 — 1 x — 1 = " open=" 0 0 = lim x → 1 ( x — 1 ) · ( x + 1 ) x — 1 = = lim x → 1 ( x — 1 ) · ( x + 1 ) · ( x + 1 ) x — 1 = lim x → 1 ( x + 1 ) · x — 1 = = 1 + 1 · 1 — 1 = 2 · 0 = 0

    Как мы видим, упрощение привело к раскрытию неопределенности.

    Ответ: lim x → 1 x 2 — 1 x — 1 = 0

    Вычислите предел lim x → 3 x — 3 12 — x — 6 + x .

    Решение

    Подставляем значение и получаем запись следующего вида.

    lim x → 3 x — 3 12 — x — 6 + x = 3 — 3 12 — 3 — 6 + 3 = 0 9 — 9 = " open=" 0 0

    Мы пришли к необходимости делить нуль на нуль, что является неопределенностью. Посмотрим нужный метод решения в таблице – это упрощение и преобразование выражения. Выполним дополнительное умножение числителя и знаменателя на сопряженное знаменателю выражение 12 — x + 6 + x :

    lim x → 3 x — 3 12 — x — 6 + x = " open=" 0 0 = lim x → 3 x — 3 12 — x + 6 + x 12 — x — 6 + x 12 — x + 6 + x

    Домножение знаменателя выполняется для того, чтобы потом можно было воспользоваться формулой сокращенного умножения (разность квадратов) и выполнить сокращение.

    lim x → 3 x — 3 12 — x + 6 + x 12 — x — 6 + x 12 — x + 6 + x = lim x → 3 x — 3 12 — x + 6 + x 12 — x 2 — 6 + x 2 = lim x → 3 ( x — 3 ) 12 — x + 6 + x 12 — x — ( 6 + x ) = = lim x → 3 ( x — 3 ) 12 — x + 6 + x 6 — 2 x = lim x → 3 ( x — 3 ) 12 — x + 6 + x — 2 ( x — 3 ) = = lim x → 3 12 — x + 6 + x — 2 = 12 — 3 + 6 + 3 — 2 = 9 + 9 — 2 = — 9 = — 3

    Как мы видим, в результате этих действий нам удалось избавиться от неопределенности.

    Ответ: lim x → 3 x — 3 12 — x — 6 + x = — 3 .

    Важно отметить, что при решении подобных задач подход с использованием домножения используется очень часто, так что советуем запомнить, как именно это делается.

    Вычислите предел lim x → 1 x 2 + 2 x — 3 3 x 2 — 5 x + 2 .

    Решение

    lim x → 1 x 2 + 2 x — 3 3 x 2 — 5 x + 2 = 1 2 + 2 · 1 — 3 3 · 1 2 — 5 · 1 + 2 = " open=" 0 0

    В итоге у нас вышла неопределенность. Рекомендуемый способ решения задачи в таком случае – упрощение выражения. Поскольку при значении x , равном единице, числитель и знаменатель обращаются в 0 , то мы можем разложить их на множители и потом сократить на х — 1 ,и тогда неопределенность исчезнет.

    Выполняем разложение числителя на множители:

    x 2 + 2 x — 3 = 0 D = 2 2 — 4 · 1 · ( — 3 ) = 16 ⇒ x 1 = — 2 — 16 2 = — 3 x 2 = — 2 + 16 2 = 1 ⇒ x 2 + 2 x — 3 = x + 3 x — 1

    Теперь делаем то же самое со знаменателем:

    3 x 2 — 5 x + 2 = 0 D = — 5 2 — 4 · 3 · 2 = 1 ⇒ x 1 = 5 — 1 2 · 3 = 2 3 x 2 = 5 + 1 2 · 3 = 1 ⇒ 3 x 2 — 5 x + 3 = 3 x — 2 3 x — 1

    Мы получили предел следующего вида:

    lim x → 1 x 2 + 2 x — 3 3 x 2 — 5 x + 2 = " open=" 0 0 = lim x → 1 x + 3 · x — 1 3 · x — 2 3 · x — 1 = = lim x → 1 x + 3 3 · x — 2 3 = 1 + 3 3 · 1 — 2 3 = 4

    Как мы видим, в ходе преобразования нам удалось избавиться от неопределенности.

    Ответ: lim x → 1 x 2 + 2 x — 3 3 x 2 — 5 x + 2 = 4 .

    Далее нам нужно рассмотреть случаи пределов на бесконечности от степенных выражений. Если показатели этих выражений будут больше 0 , то предел на бесконечности также окажется бесконечным. При этом основное значение имеет самая большая степень, а остальные можно не учитывать.

    Например, lim x → ∞ ( x 4 + 2 x 3 — 6 ) = lim x → ∞ x 4 = ∞ или lim x → ∞ x 4 + 4 x 3 + 21 x 2 — 11 5 = lim x → ∞ x 4 5 = ∞ .

    Если под знаком предела у нас стоит дробь со степенными выражениями в числителе и знаменателе, то при x → ∞ у нас возникает неопределенность вида " open=" ∞ ∞ . Чтобы избавиться от этой неопределенности, нам нужно разделить числитель и знаменатель дроби на x m a x ( m , n ) . Приведем пример решения подобной задачи.

    Вычислите предел lim x → ∞ x 7 + 2 x 5 — 4 3 x 7 + 12 .

    Решение

    lim x → ∞ x 7 + 2 x 5 — 4 3 x 7 + 12 = " open=" ∞ ∞

    Степени числителя и знаменателя равны 7 . Делим их на x 7 и получаем:

    lim x → ∞ x 7 + 2 x 5 — 4 3 x 7 + 12 = lim x → ∞ x 7 + 2 x 5 — 4 x 7 3 x 7 + 12 x 7 = = lim x → ∞ 1 + 2 x 2 — 4 x 7 3 + 12 x 7 = 1 + 2 ∞ 2 — 4 ∞ 7 3 + 12 ∞ 7 = 1 + 0 — 0 3 + 0 = 1 3

    Ответ: lim x → ∞ x 7 + 2 x 5 — 4 3 x 7 + 12 = 1 3 .

    Вычислите предел lim x → ∞ x 8 + 11 3 x 2 + x + 1 .

    Решение

    lim x → ∞ x 8 + 11 3 x 2 + x + 1 = " open=" ∞ ∞

    Числитель имеет степень 8 3 , а знаменатель 2 . Выполним деление числителя и знаменателя на x 8 3 :

    lim x → ∞ x 8 + 11 3 x 2 + x + 1 = " open=" ∞ ∞ = lim x → ∞ x 8 + 11 3 x 8 3 x 2 + x + 1 x 8 3 = = lim x → ∞ 1 + 11 x 8 3 1 x 2 3 + 1 x 5 3 + 1 x 8 3 = 1 + 11 ∞ 3 1 ∞ + 1 ∞ + 1 ∞ = 1 + 0 3 0 + 0 + 0 = 1 0 = ∞

    Читайте также:  Широко распространенный аудиоформат поддерживающий сжатие с потерями

    Ответ: lim x → ∞ x 8 + 11 3 x 2 + x + 1 = ∞ .

    Вычислите предел lim x → ∞ x 3 + 2 x 2 — 1 x 10 + 56 x 7 + 12 3 .

    Решение

    lim x → ∞ x 3 + 2 x 2 — 1 x 10 + 56 x 7 + 12 3 = " open=" ∞ ∞

    У нас есть числитель в степени 3 и знаменатель в степени 10 3 . Значит, нам нужно разделить числитель и знаменатель на x 10 3 :

    lim x → ∞ x 3 + 2 x 2 — 1 x 10 + 56 x 7 + 12 3 = " open=" ∞ ∞ = lim x → ∞ x 3 + 2 x 2 — 1 x 10 3 x 10 + 56 x 7 + 12 3 x 10 3 = = lim x → ∞ 1 x 1 3 + 2 x 4 3 — 1 x 10 3 1 + 56 x 3 + 12 x 10 3 = 1 ∞ + 2 ∞ — 1 ∞ 1 + 56 ∞ + 12 ∞ 3 = 0 + 0 — 0 1 + 0 + 0 3 = 0

    Ответ: lim x → ∞ x 3 + 2 x 2 — 1 x 10 + 56 x 7 + 12 3 = 0 .

    Выводы

    В случае с пределом отношений возможны три основных варианта:

    Если степень числителя равна степени знаменателя, то предел будет равен отношению коэффициентов при старших степенях.

    Если степень числителя будет больше степени знаменателя, то предел будет равен бесконечности.

    Если степень числителя меньше степени знаменателя, то предел будет равен нулю.

    Другие методы раскрытия неопределенностей мы разберем в отдельных статьях.

    С непосредственным вычислением пределов основных элементарных функций разобрались.

    При переходе к функциям более сложного вида мы обязательно столкнемся с появлением выражений, значение которых не определено. Такие выражения называют неопределенностями.

    Перечислим все основные виды неопределенностей: ноль делить на ноль ( 0 на 0 ), бесконечность делить на бесконечность , ноль умножить на бесконечность , бесконечность минус бесконечность , единица в степени бесконечность , ноль в степени ноль , бесконечность в степени ноль .

    ВСЕ ДРУГИЕ ВЫРАЖЕНИЯ НЕОПРЕДЕЛЕННОСТЯМИ НЕ ЯВЛЯЮТСЯ И ПРИНИМАЮТ ВПОЛНЕ КОНКРЕТНОЕ КОНЕЧНОЕ ИЛИ БЕСКОНЕЧНОЕ ЗНАЧЕНИЕ.

    Раскрывать неопределенности позволяет:

    • упрощение вида функции (преобразование выражения с использованием формул сокращенного умножения, тригонометрических формул, домножением на сопряженные выражения с последующим сокращением и т.п.);
    • использование замечательных пределов;
    • применение правила Лопиталя;
    • использование замены бесконечно малого выражения ему эквивалентным (использование таблицы эквивалентных бесконечно малых).

    Сгруппируем неопределенности в таблицу неопределенностей. Каждому виду неопределенности поставим в соответствие метод ее раскрытия (метод нахождения предела).

    Эта таблица вместе с таблицей пределов основных элементарных функций будут Вашими главными инструментами при нахождении любых пределов.

    Приведем парочку примеров, когда все сразу получается после подстановки значения и неопределенности не возникают.

    Вычислить предел

    Подставляем значение:

    И сразу получили ответ.

    Вычислить предел

    Подставляем значение х=0 в основание нашей показательно степенной функции:

    То есть, предел можно переписать в виде

    Теперь займемся показателем. Это есть степенная функция . Обратимся к таблице пределов для степенных функций с отрицательным показателем. Оттуда имеем и , следовательно, можно записать .

    Исходя из этого, наш предел запишется в виде:

    Вновь обращаемся к таблице пределов, но уже для показательных функций с основанием большим единицы, откуда имеем:

    Разберем на примерах с подробными решениями раскрытие неопределенностей преобразованием выражений.

    Очень часто выражение под знаком предела нужно немного преобразовать, чтобы избавиться от неопределенностей.

    Вычислить предел

    Подставляем значение:

    Пришли к неопределенности. Смотрим в таблицу неопределенностей для выбора метода решения. Пробуем упростить выражение.

    После преобразования неопределенность раскрылась.

    Вычислить предел

    Подставляем значение:

    Пришли к неопределенности ( 0 на 0 ). Смотрим в таблицу неопределенностей для выбора метода решения и пробуем упростить выражение. Домножим и числитель и знаменатель на выражение, сопряженное знаменателю.

    Для знаменателя сопряженным выражением будет

    Знаменатель мы домножали для того, чтобы можно было применить формулу сокращенного умножения – разность квадратов и затем сократить полученное выражение.

    После ряда преобразований неопределенность исчезла.

    ЗАМЕЧАНИЕ: для пределов подобного вида способ домножения на сопряженные выражения является типичным, так что смело пользуйтесь.

    Вычислить предел

    Подставляем значение:

    Пришли к неопределенности. Смотрим в таблицу неопределенностей для выбора метода решения и пробуем упростить выражение. Так как и числитель и знаменатель обращаются в ноль при х=1 , то если разложить на множители эти выражения, можно будет сократить (х-1) и неопределенность исчезнет.

    Разложим числитель на множители:

    Разложим знаменатель на множители:

    Наш предел примет вид:

    После преобразования неопределенность раскрылась.

    Рассмотрим пределы на бесконечности от степенных выражений. Если показатели степенного выражения положительны, то предел на бесконечности бесконечен. Причем основное значение имеет наибольшая степень, остальные можно отбрасывать.

    Пример.

    Пример.

    Если выражение под знаком предела представляет собой дробь, причем и числитель и знаменатель есть степенные выражения ( m – степень числителя, а n – степень знаменателя), то при возникает неопределенность вида бесконечность на бесконечность , в этом случае неопределенность раскрывается делением и числитель и знаменатель на

    Вычислить предел


    Степень числителя равна семи, то есть m=7 . Степень знаменателя также равна семи n=7 . Разделим и числитель и знаменатель на .

    Оцените статью
    Добавить комментарий

    Adblock detector