Тип усилителя класс d

Когда мы тестируем в нашей акустической лаборатории усилители для автомобильных аудиосистем, то частенько упоминаем в материалах их классы, мол, этот работает в экономичном классе D, а тот чисто для аудиофилов — в классе Real АВ. И тут мне недавно задали вопрос: а что это за классы такие вообще? Ну что ж, разберемся.
Выбирая в магазине подходящий усилитель для аудиосистемы, обратите внимание на то, в каком классе они работают. Класс АВ можно назвать традиционным, в нем работает большинство усилителей. В последнее время все чаще встречаются усилки класса D, которые называют цифровыми, хотя это не совсем правильно, и скоро вы поймете почему. Что предпочесть? Какой лучше? Как обычно, однозначного ответа нет, поскольку у каждого есть свои преимущества и недостатки. Но для начала пару слов о том, что и как там вообще происходит внутри.

КАЧНЕМ ТОКУ
Основные элементы практически любого усилителя — это транзисторы. Не будем вдаваться в суть построения различных схем, тем более, что их на самом деле далеко не одна, а выделим основное — сам принцип работы. Для этого на время представим усилитель в виде, ну, скажем. водопровода. Неожиданно, правда? Тем не менее, аналогия налицо, и вы сейчас в этом убедитесь. Во-первых, в усилителе есть блок питания, преобразующий однополярное напряжение бортовой сети („плюс" и „масса") в двухполярное („плюс",„масса" и „минус"). Мы уже говорили, зачем он необходим, когда рассматривали, как измеряются мощности усилителей. Так вот, в такой системе двухполярный блок питания будет представлять собой не что иное, как два насоса (насос со стороны „+" будет как бы накачивающим, а насос со стороны „-" как бы откачивающим ток относительно массы). Наша задача — пустить эти потоки через нагрузку усилителя (нагрузка — это как раз подключенный к усилителю динамик). Для этого, понятное дело, нужны краны, которые будут управлять этими потоками.
Вот как раз роль этих кранов и играют транзисторы. Они могут открываться, пропуская через себя большой поток, или закрываться, уменьшая его. „Краны" эти по отношению друг к другу обратные: когда один начнет закрываться, другой будет открываться. Соответственно, поток от „насосов" будет направляться через нагрузку то в одну, то в другую сторону. А управляет всем этим открытием-закрытием как раз входной сигнал.

УСИЛИТЕЛИ КЛАССА А. В, АВ, Н
Но на самом деле просто открывать и закрывать транзистор еще мало, ведь нам нужно, чтобы сигнал усиливался без искажений, то есть, чтобы выходной сигнал по форме в точности повторял входной. Значит нам необходимо, чтобы транзисторы (эти самые краны) открывались и закрывались по строго линейному закону, строго пропорционально входному сигналу.
Но вот незадача, на самом деле транзистор может так работать не во всем своем диапазоне. Например, если входной сигнал слишком маленький, то транзистор на него почти не реагирует, зато при достижении определенного уровня резко открывается. Какая уж тут линейность? А вот дальше этого момента реагирует на изменение управляющего сигнала вполне адекватно, почти что линейно. Значит, для того, чтобы искажений было как можно меньше, транзистор придется все время держать в приоткрытом состоянии. Это называется задать смещение транзистора или выбрать его рабочую точку.
В этом случае говорят, что усилитель работает в классе А. Такой класс усилителей по праву считается аудиофильским, поскольку обеспечивает очень маленькие искажения сигнала. Но самый главный его недостаток — высокий ток покоя. Ток покоя — это ток, который будет течь через транзисторы, даже когда входного сигнала нет (ведь нам же пришлось задать транзисторам некоторое смещение). Из-за этого они довольно сильно нагреваются, и значительная часть энергии от блока питания уходит в тепло, а КПД усилителя составляет в лучшем случае всего лишь около 20-30%.

Но поскольку автомобильные усилители на самом деле делаются не на одном транзисторе, а строятся по так называемым двухтактным схемам, т.е. с 2 транзисторами, то возникает одна заманчивая идея. Что, если не держать их постоянно приоткрытыми? Пусть они оба при отсутствии входного сигнала будут закрытыми? Поскольку транзисторы по отношению друг к другу обратные, то получится, что один из них будет открываться, когда сигнал положительный, а другой — когда сигнал отрицательный. Иными словами, получится, что первый будет усиливать положительную полуволну сигнала, а другой — отрицательную, на нагрузке же эти половинки благополучно сложатся. Когда усилитель работает в таком режиме, то говорят, что это класс В.
Решение, несомненно, хорошее, ведь через транзисторы в такой схеме не течет бесполезный ток, когда сигнала нет, а значит и КПД усилителя получается гораздо выше. Однако все бы замечательно, но дело в том, что какие бы мы хорошие и качественные транзисторы не поставили, у них все равно будет присутствовать нелинейность в самом начале их открытия. А это значит, что в тот момент, когда один транзистор только закрывается, а второй только открывается, неизбежно появится искажение в виде ступеньки.

Когда уровень сигнала высокий, эта ступенька не выглядит очень уж большой, и если особо не придираться, то на нее еще можно и не обращать особого внимания. А вот на небольших уровнях сигнала она будет уже слишком заметна. Поэтому класс В в чистом виде в автомобильных усилителях не используется из-за больших искажений.
Так какой же режим лучше всего выбрать для усилителя? В классе А — маленькие искажения, но и КПД низкий, львиная доля мощности блока питания уйдет в тепло (вот почему усилители, работающие в этом классе, греются как утюги). Класс В обеспечит хороший КПД, но искажения будут такими, что о высоком качестве воспроизведения особо говорить не придется. Компромиссное решение — это смешанный режим, когда транзисторам обеспечивается лишь небольшое смещение, гораздо меньшее, чем в чистом классе А, но уже достаточное для того, чтобы избежать заметной ступеньки в выходном сигнале. При этом так и говорят — усилитель работает в классе АВ.
Выбирая рабочую точку транзисторов (ну или иными словами, выбирая насколько транзисторы будут приоткрыты в режиме покоя, то есть при отсутствии входного сигнала), можно сделать усилитель класса АВ ближе к классу А или к В. Например, в первом случае наиболее заметен тот эффект, что до достижения определенной мощности усилитель работает в классе А, а на высоких уровнях как бы автоматически переходит в класс АВ — решение, довольно часто применяемое в усилителях высокого класса (иногда в описаниях к таким усилителям можно встретить обозначение их класса как Real АВ).
Справедливости ради, нужно отметить, что классы А, В и АВ не единственные. Есть и другие, которые можно назвать производными от них, они представляют собой попытки совместить экономичность АВ-класса с качеством А-класса. Например, класс А+ — симбиоз усилителей В-класса и А-класса (выход первого является средней точкой для второго). Или класс Super A (Non Switching) — в них специальная схема не дает транзисторам полностью запираться(ведь основные искажения, как вы уже знаете, как раз из-за нелинейности в самый начальный момент открытия транзисторов-„кранов"). А усилители класса G вообще представляют собой два каскада усиления, работающих каждый от своего источника питания разного напряжения (на небольшой мощности работает каскад, питающийся от источника с небольшим напряжением, а на пиках к нему подключается второй, питающийся от источника с большим напряжением). Впрочем, все это довольно сложные схемы, которые и в домашней то технике применяются все реже, а уж в автомобильных усилителях это, мягко говоря, и вовсе экзотика.
А вот усилители класса Н можно с уверенностью назвать чисто автомобильными. В этом классе делают усилители, встроенные в головное устройство. Понятное дело, в них нет никаких сложных блоков питания, преобразующих бортовые 12 Вольт в двухполярное питание с большим напряжением (впрочем, встроенный в ГУ усилитель все равно питается отдвухполярного напряжения, просто за среднюю точку для него принимается Uпит/2, то есть, условно говоря, 6 Вольт), поэтому мощность таких усилителей невелика. Класс Н — это попытка в какой-то мере нивелировать основной недостаток маломощных усилителей — зажатость звучания. Так как же он работает?
На самом деле, усилитель класса Н — это практически то же самое, что и обычный усилитель класса АВ. Только в нем есть так называемая схема удвоения напряжения питания, основной элемент которой — конденсатор, накапливающий заряд, когда входной сигнал не очень большой. Ну а поскольку реальный музыкальный сигнал — это вам не синус, на котором по стандарту измеряется мощность, то для него характерны кратковременные пики. Так вот, как раз в моменты таких пиков этот самый конденсатор специальной схемой добавляется последовательно к питающему напряжению, и оно как бы кратковременно удваивается, помогая усилителю воспроизвести эти пики с меньшими искажениями. Это, на самом деле, не особо сказывается на мощности усилителя, измеренной стандартно на синусоидальном сигнале, но на средних и высоких частотах звучание субъективно становится лучше.

КСТАТИ
Класс усилителя в первом приближении можно распознать по характеру зависимости КНИ от мощности. Смотрите, на малых уровнях сигнала класс А обеспечивает самые маленькие искажения. А вот класс В за счет „ступеньки" в сигнале на малых уровнях непременно будет иметь повышенные искажения (так называемая проблема первого Ватта). Класс АВ где-то между ними.

УСИЛИТЕЛИ КЛАССА D
Классы А, В, АВ и прочие их производные — это все традиционные классы аналоговых усилителей, принципы построения у них схожие, разве что режимы работы транзисторов выбираются разные, да добавляются кое-какие примочки. Но есть и усилители, которые строятся изначально несколько иначе. Это импульсные усилители класса D (их, кстати, иногда называют цифровыми, хотя на самом деле технически это не очень корректно, в цифровую форму там ничего не переводится). Давайте в общих чертах разберем, как работает усилитель D-класса.
Первым делом аналоговый входной сигнал (то есть обычный непрерывный сигнал с изменяющейся амплитудой) преобразуется в импульсный (сигнал с постоянной амплитудой, но прерывающийся). Причем длительности следующих друг за другом импульсов и пауз между ними будут разными, но самое главное — они будут в строгой зависимости от входного сигнала. Например, выше амплитуда входного сигнала — импульсы длиннее, ниже амплитуда — импульсы короче. Это называется широтно-импульсная модуляция (ШИМ).
Теперь полученный импульсный сигнал нужно усилить, и делается это точно так же, как и в обычных усилителях. И тут может возникнуть вопрос: а зачем вообще было преобразовывать сигнал в импульсный, если его все равно приходится усиливать, как и в обычном усилителе? Оказывается, смысл есть. Дело в том, что транзисторы в этом случае будут работать совершенно по-другому — в ключевом режиме. То есть они будут либо полностью открытыми, либо полностью закрытыми, без промежуточных вариантов. А ведь для такой работы, во-первых, нет необходимости подбирать транзисторы с линейной ВАХ и стараться попасть на линейный участок этой характеристики. Во-вторых (а это, собственно, следствие из первого), КПД таких усилителей может запросто вплотную приблизиться к идеалу в 100%. А ведь это показатель, недостижимый для обычных усилителей в принципе. Так что усиливаем импульсный сигнал, и радуемся, как у нас это легко получается.
Однако ж подавать такой усиленный импульсный сигнал на акустические системы, понятное дело, еще рано (как, позвольте спросить, под такой сигнал будет диффузор плясать?). Для этого нужно преобразовать его в обычную, аналоговую форму. Сделать это можно с помощью катушки индуктивности и конденсатора, которые вместе будут представлять собой LC-фильтр. Пропустив через них наш импульсный ШИМ-сигнал, на выходе мы получим усиленный сигнал, своей формой повторяющий входной.

Читайте также:  Почему в сливном бачке медленно набирается вода

Основное достоинство усилителей D-класса — высокий КПД. Однако есть и серьезный недостаток — частотный диапазон усилителя чаще всего бывает серьезно ограничен сверху. Именно это долгое время и было причиной применения этой технологии только в басовых моноблоках, рассчитанных исключительно на сабвуферное применение. Впрочем, с ее развитием и обычные, широкополосные усилители D-класса уже давно перестали быть экзотикой.

Задачей звуковых усилителей является передача входного звукового сигнала к системе воспроизведения звука с необходимыми громкостью и уровнем мощности — точно, эффективно и с малыми помехами. Звуковые частоты — это диапазон от 20 Гц до 20 кГц, соответственно усилитель должен обладать хорошей АЧХ во всем диапазоне (или же в более узкой области, если речь идет о динамике с ограниченной полосой воспроизведения, например о среднечастотном или высокочастотном динамике в многополосной системе). Мощности могут быть разными (в зависимости от конкретного устройства): милливатты в наушниках, ватты в звуковых телевизионных системах и аудио для ПК, десятки ватт в домашних и автомобильных звуковых системах, сотни и более ватт в мощных домашних и концертных звуковых системах.
В обычных аналоговых звуковых усилителях транзисторы в линейном режиме применяются для генерации выходного напряжения, которое точно масштабирует входное. Коэффициент передачи по напряжению обычно достаточно велик (около 40 дБ). Если усиление в прямом направлении входит в цепь с обратной связью, то и коэффициент усиления всей цепи с обратной связью будет велик. Обратная связь в усилителях применяется часто, так как большой коэффициент передачи в сочетании с обратной связью улучшает качество усилителя: подавляет искажения, вызванные нелинейностями в прямой цепи, и снижает шумы от источника питания за счет того, что снижается коэффициент влияния источника питания (PSRR).
В обычном транзисторном усилителе транзисторы выходного каскада обеспечивают непрерывный сигнал на выходе. Существует множество различных инженерных решений для аудиосистем: усилители классов A, AB и B. Во всех, даже в самых эффективных, линейных выходных каскадах рассеивание мощности больше, чем в усилителях класса D. Это свойство усилителей класса D обеспечивает им преимущество в различных системах, так как малое рассеивание мощности означает меньший нагрев схемы, позволяет экономить место на плате, снижает стоимость и продлевает срок автономной работы батарей в портативных устройствах.

Когда мы тестируем в нашей акустической лаборатории усилители для автомобильных аудиосистем, то частенько упоминаем в материалах их классы, мол, этот работает в экономичном классе D, а тот чисто для аудиофилов — в классе Real АВ. И тут мне недавно задали вопрос: а что это за классы такие вообще? Ну что ж, разберемся.
Выбирая в магазине подходящий усилитель для аудиосистемы, обратите внимание на то, в каком классе они работают. Класс АВ можно назвать традиционным, в нем работает большинство усилителей. В последнее время все чаще встречаются усилки класса D, которые называют цифровыми, хотя это не совсем правильно, и скоро вы поймете почему. Что предпочесть? Какой лучше? Как обычно, однозначного ответа нет, поскольку у каждого есть свои преимущества и недостатки. Но для начала пару слов о том, что и как там вообще происходит внутри.

КАЧНЕМ ТОКУ
Основные элементы практически любого усилителя — это транзисторы. Не будем вдаваться в суть построения различных схем, тем более, что их на самом деле далеко не одна, а выделим основное — сам принцип работы. Для этого на время представим усилитель в виде, ну, скажем. водопровода. Неожиданно, правда? Тем не менее, аналогия налицо, и вы сейчас в этом убедитесь. Во-первых, в усилителе есть блок питания, преобразующий однополярное напряжение бортовой сети („плюс" и „масса") в двухполярное („плюс",„масса" и „минус"). Мы уже говорили, зачем он необходим, когда рассматривали, как измеряются мощности усилителей. Так вот, в такой системе двухполярный блок питания будет представлять собой не что иное, как два насоса (насос со стороны „+" будет как бы накачивающим, а насос со стороны „-" как бы откачивающим ток относительно массы). Наша задача — пустить эти потоки через нагрузку усилителя (нагрузка — это как раз подключенный к усилителю динамик). Для этого, понятное дело, нужны краны, которые будут управлять этими потоками.
Вот как раз роль этих кранов и играют транзисторы. Они могут открываться, пропуская через себя большой поток, или закрываться, уменьшая его. „Краны" эти по отношению друг к другу обратные: когда один начнет закрываться, другой будет открываться. Соответственно, поток от „насосов" будет направляться через нагрузку то в одну, то в другую сторону. А управляет всем этим открытием-закрытием как раз входной сигнал.

УСИЛИТЕЛИ КЛАССА А. В, АВ, Н
Но на самом деле просто открывать и закрывать транзистор еще мало, ведь нам нужно, чтобы сигнал усиливался без искажений, то есть, чтобы выходной сигнал по форме в точности повторял входной. Значит нам необходимо, чтобы транзисторы (эти самые краны) открывались и закрывались по строго линейному закону, строго пропорционально входному сигналу.
Но вот незадача, на самом деле транзистор может так работать не во всем своем диапазоне. Например, если входной сигнал слишком маленький, то транзистор на него почти не реагирует, зато при достижении определенного уровня резко открывается. Какая уж тут линейность? А вот дальше этого момента реагирует на изменение управляющего сигнала вполне адекватно, почти что линейно. Значит, для того, чтобы искажений было как можно меньше, транзистор придется все время держать в приоткрытом состоянии. Это называется задать смещение транзистора или выбрать его рабочую точку.
В этом случае говорят, что усилитель работает в классе А. Такой класс усилителей по праву считается аудиофильским, поскольку обеспечивает очень маленькие искажения сигнала. Но самый главный его недостаток — высокий ток покоя. Ток покоя — это ток, который будет течь через транзисторы, даже когда входного сигнала нет (ведь нам же пришлось задать транзисторам некоторое смещение). Из-за этого они довольно сильно нагреваются, и значительная часть энергии от блока питания уходит в тепло, а КПД усилителя составляет в лучшем случае всего лишь около 20-30%.

Но поскольку автомобильные усилители на самом деле делаются не на одном транзисторе, а строятся по так называемым двухтактным схемам, т.е. с 2 транзисторами, то возникает одна заманчивая идея. Что, если не держать их постоянно приоткрытыми? Пусть они оба при отсутствии входного сигнала будут закрытыми? Поскольку транзисторы по отношению друг к другу обратные, то получится, что один из них будет открываться, когда сигнал положительный, а другой — когда сигнал отрицательный. Иными словами, получится, что первый будет усиливать положительную полуволну сигнала, а другой — отрицательную, на нагрузке же эти половинки благополучно сложатся. Когда усилитель работает в таком режиме, то говорят, что это класс В.
Решение, несомненно, хорошее, ведь через транзисторы в такой схеме не течет бесполезный ток, когда сигнала нет, а значит и КПД усилителя получается гораздо выше. Однако все бы замечательно, но дело в том, что какие бы мы хорошие и качественные транзисторы не поставили, у них все равно будет присутствовать нелинейность в самом начале их открытия. А это значит, что в тот момент, когда один транзистор только закрывается, а второй только открывается, неизбежно появится искажение в виде ступеньки.

Когда уровень сигнала высокий, эта ступенька не выглядит очень уж большой, и если особо не придираться, то на нее еще можно и не обращать особого внимания. А вот на небольших уровнях сигнала она будет уже слишком заметна. Поэтому класс В в чистом виде в автомобильных усилителях не используется из-за больших искажений.
Так какой же режим лучше всего выбрать для усилителя? В классе А — маленькие искажения, но и КПД низкий, львиная доля мощности блока питания уйдет в тепло (вот почему усилители, работающие в этом классе, греются как утюги). Класс В обеспечит хороший КПД, но искажения будут такими, что о высоком качестве воспроизведения особо говорить не придется. Компромиссное решение — это смешанный режим, когда транзисторам обеспечивается лишь небольшое смещение, гораздо меньшее, чем в чистом классе А, но уже достаточное для того, чтобы избежать заметной ступеньки в выходном сигнале. При этом так и говорят — усилитель работает в классе АВ.
Выбирая рабочую точку транзисторов (ну или иными словами, выбирая насколько транзисторы будут приоткрыты в режиме покоя, то есть при отсутствии входного сигнала), можно сделать усилитель класса АВ ближе к классу А или к В. Например, в первом случае наиболее заметен тот эффект, что до достижения определенной мощности усилитель работает в классе А, а на высоких уровнях как бы автоматически переходит в класс АВ — решение, довольно часто применяемое в усилителях высокого класса (иногда в описаниях к таким усилителям можно встретить обозначение их класса как Real АВ).
Справедливости ради, нужно отметить, что классы А, В и АВ не единственные. Есть и другие, которые можно назвать производными от них, они представляют собой попытки совместить экономичность АВ-класса с качеством А-класса. Например, класс А+ — симбиоз усилителей В-класса и А-класса (выход первого является средней точкой для второго). Или класс Super A (Non Switching) — в них специальная схема не дает транзисторам полностью запираться(ведь основные искажения, как вы уже знаете, как раз из-за нелинейности в самый начальный момент открытия транзисторов-„кранов"). А усилители класса G вообще представляют собой два каскада усиления, работающих каждый от своего источника питания разного напряжения (на небольшой мощности работает каскад, питающийся от источника с небольшим напряжением, а на пиках к нему подключается второй, питающийся от источника с большим напряжением). Впрочем, все это довольно сложные схемы, которые и в домашней то технике применяются все реже, а уж в автомобильных усилителях это, мягко говоря, и вовсе экзотика.
А вот усилители класса Н можно с уверенностью назвать чисто автомобильными. В этом классе делают усилители, встроенные в головное устройство. Понятное дело, в них нет никаких сложных блоков питания, преобразующих бортовые 12 Вольт в двухполярное питание с большим напряжением (впрочем, встроенный в ГУ усилитель все равно питается отдвухполярного напряжения, просто за среднюю точку для него принимается Uпит/2, то есть, условно говоря, 6 Вольт), поэтому мощность таких усилителей невелика. Класс Н — это попытка в какой-то мере нивелировать основной недостаток маломощных усилителей — зажатость звучания. Так как же он работает?
На самом деле, усилитель класса Н — это практически то же самое, что и обычный усилитель класса АВ. Только в нем есть так называемая схема удвоения напряжения питания, основной элемент которой — конденсатор, накапливающий заряд, когда входной сигнал не очень большой. Ну а поскольку реальный музыкальный сигнал — это вам не синус, на котором по стандарту измеряется мощность, то для него характерны кратковременные пики. Так вот, как раз в моменты таких пиков этот самый конденсатор специальной схемой добавляется последовательно к питающему напряжению, и оно как бы кратковременно удваивается, помогая усилителю воспроизвести эти пики с меньшими искажениями. Это, на самом деле, не особо сказывается на мощности усилителя, измеренной стандартно на синусоидальном сигнале, но на средних и высоких частотах звучание субъективно становится лучше.

Читайте также:  Следить за тем чтобы

КСТАТИ
Класс усилителя в первом приближении можно распознать по характеру зависимости КНИ от мощности. Смотрите, на малых уровнях сигнала класс А обеспечивает самые маленькие искажения. А вот класс В за счет „ступеньки" в сигнале на малых уровнях непременно будет иметь повышенные искажения (так называемая проблема первого Ватта). Класс АВ где-то между ними.

УСИЛИТЕЛИ КЛАССА D
Классы А, В, АВ и прочие их производные — это все традиционные классы аналоговых усилителей, принципы построения у них схожие, разве что режимы работы транзисторов выбираются разные, да добавляются кое-какие примочки. Но есть и усилители, которые строятся изначально несколько иначе. Это импульсные усилители класса D (их, кстати, иногда называют цифровыми, хотя на самом деле технически это не очень корректно, в цифровую форму там ничего не переводится). Давайте в общих чертах разберем, как работает усилитель D-класса.
Первым делом аналоговый входной сигнал (то есть обычный непрерывный сигнал с изменяющейся амплитудой) преобразуется в импульсный (сигнал с постоянной амплитудой, но прерывающийся). Причем длительности следующих друг за другом импульсов и пауз между ними будут разными, но самое главное — они будут в строгой зависимости от входного сигнала. Например, выше амплитуда входного сигнала — импульсы длиннее, ниже амплитуда — импульсы короче. Это называется широтно-импульсная модуляция (ШИМ).
Теперь полученный импульсный сигнал нужно усилить, и делается это точно так же, как и в обычных усилителях. И тут может возникнуть вопрос: а зачем вообще было преобразовывать сигнал в импульсный, если его все равно приходится усиливать, как и в обычном усилителе? Оказывается, смысл есть. Дело в том, что транзисторы в этом случае будут работать совершенно по-другому — в ключевом режиме. То есть они будут либо полностью открытыми, либо полностью закрытыми, без промежуточных вариантов. А ведь для такой работы, во-первых, нет необходимости подбирать транзисторы с линейной ВАХ и стараться попасть на линейный участок этой характеристики. Во-вторых (а это, собственно, следствие из первого), КПД таких усилителей может запросто вплотную приблизиться к идеалу в 100%. А ведь это показатель, недостижимый для обычных усилителей в принципе. Так что усиливаем импульсный сигнал, и радуемся, как у нас это легко получается.
Однако ж подавать такой усиленный импульсный сигнал на акустические системы, понятное дело, еще рано (как, позвольте спросить, под такой сигнал будет диффузор плясать?). Для этого нужно преобразовать его в обычную, аналоговую форму. Сделать это можно с помощью катушки индуктивности и конденсатора, которые вместе будут представлять собой LC-фильтр. Пропустив через них наш импульсный ШИМ-сигнал, на выходе мы получим усиленный сигнал, своей формой повторяющий входной.

Основное достоинство усилителей D-класса — высокий КПД. Однако есть и серьезный недостаток — частотный диапазон усилителя чаще всего бывает серьезно ограничен сверху. Именно это долгое время и было причиной применения этой технологии только в басовых моноблоках, рассчитанных исключительно на сабвуферное применение. Впрочем, с ее развитием и обычные, широкополосные усилители D-класса уже давно перестали быть экзотикой.

Задачей звуковых усилителей является передача входного звукового сигнала к системе воспроизведения звука с необходимыми громкостью и уровнем мощности — точно, эффективно и с малыми помехами. Звуковые частоты — это диапазон от 20 Гц до 20 кГц, соответственно усилитель должен обладать хорошей АЧХ во всем диапазоне (или же в более узкой области, если речь идет о динамике с ограниченной полосой воспроизведения, например о среднечастотном или высокочастотном динамике в многополосной системе). Мощности могут быть разными (в зависимости от конкретного устройства): милливатты в наушниках, ватты в звуковых телевизионных системах и аудио для ПК, десятки ватт в домашних и автомобильных звуковых системах, сотни и более ватт в мощных домашних и концертных звуковых системах.
В обычных аналоговых звуковых усилителях транзисторы в линейном режиме применяются для генерации выходного напряжения, которое точно масштабирует входное. Коэффициент передачи по напряжению обычно достаточно велик (около 40 дБ). Если усиление в прямом направлении входит в цепь с обратной связью, то и коэффициент усиления всей цепи с обратной связью будет велик. Обратная связь в усилителях применяется часто, так как большой коэффициент передачи в сочетании с обратной связью улучшает качество усилителя: подавляет искажения, вызванные нелинейностями в прямой цепи, и снижает шумы от источника питания за счет того, что снижается коэффициент влияния источника питания (PSRR).
В обычном транзисторном усилителе транзисторы выходного каскада обеспечивают непрерывный сигнал на выходе. Существует множество различных инженерных решений для аудиосистем: усилители классов A, AB и B. Во всех, даже в самых эффективных, линейных выходных каскадах рассеивание мощности больше, чем в усилителях класса D. Это свойство усилителей класса D обеспечивает им преимущество в различных системах, так как малое рассеивание мощности означает меньший нагрев схемы, позволяет экономить место на плате, снижает стоимость и продлевает срок автономной работы батарей в портативных устройствах.

В данной статье мы подробно рассмотрим классификации усилителей: A, B, AB, C и от D до T. В конце статьи таблица классов усилителей по углу проводимости.

Классификация

Усилители классифицируются по классам в зависимости от их конструкции и эксплуатационных характеристик.

Не все усилители одинаковы, и существует четкое различие между настройкой и работой их выходных каскадов. Основными рабочими характеристиками идеального усилителя являются линейность, усиление сигнала, эффективность и выходная мощность, но в реальных усилителях всегда существует компромисс между этими различными характеристиками.

Как правило, большие усилители сигнала или мощности используются на выходных каскадах аудиоусилителей для управления нагрузкой громкоговорителя. Типичный громкоговоритель имеет импеданс от 4 Ом до 8 Ом, поэтому усилитель мощности должен быть способен подавать высокие пиковые токи, необходимые для возбуждения низкоомного динамика.

Один метод, используемый для различения электрических характеристик усилителей разных типов, относится к «классу», и в качестве таких усилителей классифицируются в соответствии с их схемотехнической конфигурацией и методом работы. Тогда Классы усилителей — это термин, используемый для различения разных типов усилителей.

Классы усилителя представляют величину выходного сигнала, которая изменяется в схеме усилителя в течение одного цикла работы при возбуждении синусоидальным входным сигналом. Классификация усилителей варьируется от полностью линейного режима (для использования при усилении сигнала высокой точности) с очень низкой эффективностью до полностью нелинейного (где точное воспроизведение сигнала не так важно), но с гораздо более высоким КПД, в то время как другие являются компромиссом между двумя.

Классы усилителей в основном объединены в две основные группы. Первыми являются классически управляемые усилители угла проводимости, формирующие более распространенные классы усилителей A, B, AB и C , которые определяются длиной их состояния проводимости на некоторой части выходного сигнала, так что работа транзистора выходного каскада лежит где-то между «полностью включен» и «полностью выключен».

Второй набор усилителей — это более новые так называемые «переключающие» классы усилителей D, E, F, G, S, T и т.д., Которые используют цифровые схемы и широтно-импульсную модуляцию (ШИМ) для постоянного переключения сигнала между «полностью ВКЛ.» и «полностью ВЫКЛ.», приводящие к сильному выходу в области насыщения и обрезания транзисторов.

Наиболее часто создаваемые классы усилителей — это классы, которые используются в качестве аудиоусилителей, в основном, классы A, B, AB и C, и, для простоты, именно эти типы классов усилителей мы рассмотрим здесь более подробно.

Усилитель класса А

Усилители класса А являются наиболее распространенным типом усилителей класса в основном благодаря их простой конструкции. Класс A буквально означает «лучший класс» усилителя, в основном из-за их низких уровней искажения сигнала и, вероятно, является лучшим звучанием из всех классов усилителей, упомянутых здесь. Усилитель класса А имеет самую высокую линейность по сравнению с другими классами усилителей и, как таковой, работает в линейной части кривой характеристик.

Читайте также:  Выбор радар детектора 2018

Обычно усилители класса A используют один и тот же транзистор (биполярный, полевой транзистор, IGBT и т.д.), подключенный в общей конфигурации эмиттера для обеих половин сигнала, причем транзистор всегда проходит через него, даже если у него нет базового сигнала. Это означает, что выходной каскад, будь то биполярное устройство, устройство MOSFET или IGBT, никогда не приводится полностью в свои области отсечки или насыщения, а вместо этого имеет базовую точку смещения Q в середине линии нагрузки. Тогда транзистор никогда не выключается, что является одним из его основных недостатков.

Для достижения высокой линейности и усиления выходного каскада усилителя класса A постоянно смещен в положение «ВКЛ» (проводящий). Затем для того, чтобы усилитель был классифицирован как «класс A», нулевой ток холостого хода на выходном каскаде должен быть равен или превышать максимальный ток нагрузки (обычно громкоговоритель), необходимый для получения наибольшего выходного сигнала.

Поскольку усилитель класса А работает в линейной части своих характеристических кривых, одно выходное устройство проходит через полные 360 градусов выходного сигнала. Тогда усилитель класса А эквивалентен источнику тока.

Поскольку усилитель класса A работает в линейной области, напряжение смещения постоянного тока (или затвора) базы транзисторов должно быть выбрано правильно, чтобы обеспечить правильную работу и низкий уровень искажений. Однако, поскольку выходное устройство постоянно включено, оно постоянно проводит ток, который представляет собой постоянную потерю мощности в усилителе.

Из-за этой постоянной потери мощности усилители класса A создают огромное количество тепла, добавляя к их очень низкому КПД около 30%, что делает их непрактичными для мощных усилителей. Кроме того, из-за высокого тока холостого хода усилителя, источник питания должен иметь соответствующие размеры и быть хорошо отфильтрованными, чтобы избежать любого гула и шума усилителя. Поэтому из-за низкой эффективности и проблем перегрева усилителей класса A были разработаны более эффективные классы усилителей.

Усилитель класса B

Усилители класса B были изобретены как решение проблем эффективности и нагрева, связанных с предыдущим усилителем класса A. Усилитель базового класса B использует два дополнительных транзистора, либо биполярные из полевых транзисторов, для каждой половины формы сигнала, а его выходной каскад сконфигурирован по схеме «двухтактный», так что каждое транзисторное устройство усиливает только половину выходного сигнала.

В усилителе класса B отсутствует базовый ток смещения постоянного тока, поскольку его ток покоя равен нулю, так что мощность постоянного тока мала, и, следовательно, его эффективность намного выше, чем у усилителя класса А. Однако цена, уплачиваемая за повышение эффективности, заключается в линейности коммутационного устройства.

Когда входной сигнал становится положительным, транзистор с положительным смещением проводит, а отрицательный транзистор выключен. Аналогично, когда входной сигнал становится отрицательным, положительный транзистор выключается, а отрицательный смещенный транзистор включается и проводит отрицательную часть сигнала. Таким образом, транзистор проводит только половину времени либо в положительном, либо в отрицательном полупериоде входного сигнала.

Затем мы можем видеть, что каждое транзисторное устройство усилителя класса B проводит только через половину или 180 градусов выходного сигнала в строгом временном чередовании, но поскольку выходной каскад имеет устройства для обеих половин сигнала, эти две половины объединяются вместе для получения полного линейного выходного сигнала.

Эта двухтактная конструкция усилителя, очевидно, более эффективна, чем класс A, примерно на 50%, но проблема с конструкцией усилителя класса B заключается в том, что она может создавать искажения в точке пересечения нуля сигнала из-за мертвой зоны транзисторов входных базовых напряжений от -0,7 В до +0,7.

Мы помним из учебника по транзисторам, что требуется напряжение базового эмиттера около 0,7 вольт, чтобы заставить биполярный транзистор начать проводку. Затем в усилителе класса B выходной транзистор не «смещен» до состояния «ВКЛ», пока не будет превышено это напряжение.

Это означает, что та часть сигнала, которая попадает в это окно 0,7 В, не будет воспроизводиться точно, что делает усилитель класса B непригодным для применения в прецизионных усилителях звука.

Чтобы преодолеть это искажение при пересечении нуля (также известное как перекрёстное искажение), были разработаны усилители класса AB.

Усилитель класса AB

Как следует из названия, усилитель класса AB представляет собой комбинацию усилителей типа «класс A» и «класс B», которые мы рассмотрели выше. Классификация усилителя AB в настоящее время является одним из наиболее распространенных типов конструкции усилителя мощности звука. Усилитель класса AB является разновидностью усилителя класса B, как описано выше, за исключением того, что обоим устройствам разрешено проводить в одно и то же время вокруг точки пересечения осциллограмм, что устраняет проблемы искажения кроссовера предыдущего усилителя класса B.

Два транзистора имеют очень небольшое напряжение смещения, обычно от 5 до 10% от тока покоя, чтобы сместить транзисторы чуть выше его точки отсечки. Тогда проводящее устройство, либо биполярное из полевого транзистора, будет включено в течение более одного полупериода, но намного меньше, чем один полный цикл входного сигнала. Следовательно, в конструкции усилителя класса AB каждый из двухтактных транзисторов проводит чуть больше, чем половину цикла проводимости в классе B, но намного меньше, чем полный цикл проводимости класса A.

Другими словами, угол проводимости усилителя класса AB находится где-то между 180 o и 360 o в зависимости от выбранной точки смещения.

Преимущество этого небольшого напряжения смещения, обеспечиваемого последовательными диодами или резисторами, состоит в том, что перекрестное искажение, создаваемое характеристиками усилителя класса B, преодолевается без неэффективности конструкции усилителя класса A. Таким образом, усилитель класса AB является хорошим компромиссом между классом A и классом B с точки зрения эффективности и линейности, при этом эффективность преобразования достигает примерно от 50% до 60%.

Усилитель класса C

Конструкция усилителя класса C обладает наибольшей эффективностью, но самой плохой линейностью среди классов усилителей, упомянутых здесь. Предыдущие классы A, B и AB считаются линейными усилителями, поскольку амплитуда и фаза выходных сигналов линейно связаны с амплитудой и фазой входных сигналов.

Однако усилитель класса C сильно смещен, так что выходной ток равен нулю в течение более половины цикла синусоидального входного сигнала, когда транзистор находится в режиме ожидания в точке его отключения. Другими словами, угол проводимости для транзистора значительно меньше 180 градусов и, как правило, составляет около 90 градусов.

Хотя эта форма смещения транзистора дает значительно улучшенную эффективность усилителя, составляющую примерно 80%, она вносит очень сильные искажения в выходной сигнал. Поэтому усилители класса C не подходят для использования в качестве усилителей звука.

Из-за сильного искажения звука усилители класса C обычно используются в высокочастотных синусоидальных генераторах и некоторых типах радиочастотных усилителей, где импульсы тока, генерируемые на выходе усилителей, могут быть преобразованы в синусоидальные волны определенной частоты использование LC резонансных цепей в его коллекторной цепи.

Другие распространенные классы усилителей

  • Усилитель класса D — это нелинейный импульсный усилитель или ШИМ-усилитель. Усилители класса D теоретически могут достигать 100% эффективности, так как в течение цикла не существует периода, когда формы напряжения и тока перекрываются, так как ток подается только через включенный транзистор.
  • Усилитель класса F повышают как эффективность, так и выходную мощность благодаря использованию гармонических резонаторов в выходной сети для преобразования формы выходного сигнала в прямоугольную волну. Усилители класса F способны обеспечить высокую эффективность более 90%, если используется бесконечная гармоническая настройка.
  • Усилитель класса G предлагает усовершенствования конструкции усилителя базового класса AB. Класс G использует несколько шин питания различных напряжений и автоматически переключается между этими линиями питания при изменении входного сигнала. Такое постоянное переключение снижает среднее энергопотребление и, следовательно, потери мощности, вызванные потерей тепла.
  • Усилитель класса I имеет два набора дополнительных выходных переключающих устройств, расположенных в параллельной двухтактной конфигурации, причем оба набора переключающих устройств дискретизируют один и тот же входной сигнал. Одно устройство переключает положительную половину сигнала, а другое переключает отрицательную половину, как усилитель класса B. При отсутствии входного сигнала или когда сигнал достигает точки пересечения нуля, переключающие устройства включаются и выключаются одновременно с рабочим циклом ШИМ 50%, что отменяет любые высокочастотные сигналы. Для получения положительной половины выходного сигнала выходной сигнал положительного переключающего устройства увеличивается в рабочем цикле, тогда как отрицательное переключающее устройство уменьшается на то же самое, и наоборот. Считается, что два токовых сигнала переключения чередуются на выходе, давая усилителю класса I имя: «чередующийся ШИМ-усилитель», работающий на частотах переключения более 250 кГц.
  • Усилитель класса S — это усилитель нелинейного режима переключения, аналогичный по своему действию усилителю класса D. Усилитель класса S преобразует аналоговые входные сигналы в цифровые прямоугольные импульсы с помощью дельта-сигма-модулятора и усиливает их, чтобы увеличить выходную мощность, прежде чем окончательно демодулировать с помощью полосового фильтра. Поскольку цифровой сигнал этого переключающего усилителя всегда либо полностью включен, либо выключен (теоретически нулевое рассеивание мощности), возможны коэффициенты полезного действия, достигающие 100%.
  • Усилитель класса T — это еще один тип цифрового усилителя с коммутацией. Усилители класса T в наши дни становятся все более популярными в качестве конструкции усилителя звука из-за наличия микросхем цифровой обработки сигналов (DSP) и многоканальных усилителей объемного звука, поскольку он преобразует аналоговые сигналы в сигналы с цифровой широтно-импульсной модуляцией (ШИМ) для усиление, увеличивающее эффективность усилителей. Конструкции усилителей класса T сочетают в себе уровни сигнала с низким уровнем искажений усилителя класса AB и коэффициент полезного действия усилителя класса D.

Мы видели здесь ряд классификаций усилителей, начиная от линейных усилителей мощности до нелинейных переключающих усилителей, и видели, как класс усилителей отличается вдоль линии нагрузки усилителей.

Краткое описание классов усилителей

Мы увидели, что рабочая точка постоянного тока Q усилителя определяет классификацию усилителя. Устанавливая положение точки Q наполовину на линии нагрузки кривой характеристик усилителей, усилитель будет работать как усилитель класса А. Перемещая Q вниз по линии нагрузки изменит усилитель в классе АВ, В или С.

Тогда класс работы усилителя относительно его рабочей точки постоянного тока может быть задан как:

Мы рассмотрели здесь ряд классификаций усилителей, начиная от линейных усилителей мощности до нелинейных переключающих усилителей, и видели, как класс усилителей отличается вдоль линии нагрузки усилителей.

Таблица классов усилителей по углу проводимости

Усилители класса АВ, В и С могут быть определены в терминах угла проводимости θ следующим образом: