Замечательные пределы примеры с решениями

Термин "замечательный предел" широко используется в учебниках и методических пособиях для обозначения важных тождеств, которые помогают существенно упростить работу по нахождению пределов.

Но чтобы суметь привести свой предел к замечательному, нужно к нему хорошенько приглядеться, ведь они встречаются не в прямом виде, а часто в виде следствий, снабженные дополнительными слагаемыми и множителями. Впрочем, сначала теория, потом примеры, и все у вас получится!

Первый замечательный предел

Первый замечательный предел записывается так (неопределенность вида $0/0$):

Следствия из первого замечательного предела

Примеры решений: 1 замечательный предел

Решение. Первый шаг всегда одинаковый — подставляем предельное значение $x=0$ в функцию и получаем:

Получили неопределенность вида $left[frac<0><0>
ight]$, которую следует раскрыть. Если посмотреть внимательно, исходный предел очень похож на первый замечательный, но не совпадает с ним. Наша задача — довести до похожести. Преобразуем так — смотрим на выражение под синусом, делаем такое же в знаменателе (условно говоря, умножили и поделили на $3x$), дальше сокращаем и упрощаем:

Выше как раз и получился первый замечательный предел: $$ limlimits_frac<sin (3x)> <3x>= limlimits_frac<sin (y)>=1, ext < сделали условную замену >y=3x. $$ Ответ: $3/8$.

Решение. Подставляем предельное значение $x=0$ в функцию и получаем:

Получили неопределенность вида $left[frac<0><0>
ight]$. Преобразуем предел, используя в упрощении первый замечательный предел (три раза!):

Решение. А что если под тригонометрической функцией сложное выражение? Не беда, и тут действуем аналогично. Сначала проверим тип неопределенности, подставляем $x=0$ в функцию и получаем:

Получили неопределенность вида $left[frac<0><0>
ight]$. Умножим и поделим на $2x^3+3x$:

Снова получили неопределенность, но в этом случае это просто дробь. Сократим на $x$ числитель и знаменатель:

Второй замечательный предел

Второй замечательный предел записывается так (неопределенность вида $1^infty$):

$$ limlimits_ left( 1+frac<1>
ight)^
=e, quad ext <или>quad limlimits_ left( 1+x
ight)^<1/x>=e. $$

Следствия второго замечательного предела

Примеры решений: 2 замечательный предел

Решение. Проверим тип неопределенности, подставляем $x=infty$ в функцию и получаем:

Получили неопределенность вида $left[1^<infty>
ight]$. Предел можно свести к второму замечательному. Преобразуем:

Выражение в скобках фактически и есть второй замечательный предел $limlimits_ left( 1+frac<1>
ight)^
=e$, только $t=-3x/2$, поэтому

Решение. Подставляем $x=infty$ в функцию и получаем неопределенность вида $left[ frac<infty><infty>
ight]$. А нам нужно $left[1^<infty>
ight]$. Поэтому начнем с преобразования выражения в скобках:

Выражение в скобках фактически и есть второй замечательный предел $limlimits_ left( 1+frac<1>
ight)^
=e$, только $t=frac <2x^2-x+8> o infty$, поэтому

Первый замечательный предел часто применяется для вычисления пределов содержащих синус, арксинус, тангенс, арктангенс и получающихся при них неопределенностей ноль делить на ноль.

Формула

Формула первого замечательного предела имеет вид: $$ lim_ <alpha o 0>frac<sinalpha> <alpha>= 1 $$

Замечаем, что при $ alpha o 0 $ получается $ sinalpha o 0 $, тем самым в числетеле и в знаменателе имеем нули. Таким образом формула первого замечательного предела нужна для раскрытия неопределенностей $ frac<0> <0>$.

Для применения формулы необходимо, чтобы были соблюдены два условия:

  1. Выражения, содержащиеся в синусе и знаменателе дроби совпадают
  2. Выражения, стоящие в синусе и знаменателе дроби стремятся к нулю

Внимание! $ lim_ frac<sin(2x^2+1)> <2x^2+1>
eq 1 $ Хотя выражения под синусом и в знаменателе одинаковые, однако $ 2x^2+1 = 1 $, при $ x o 0 $. Не выполнено второе условие, поэтому применять формулу НЕЛЬЗЯ!

Следствия

Достаточно редко в задания можно увидеть чистый первый замечательный предел, в котором можно сразу было бы записать ответ. На практике всё немного сложнее выглядит, но для таких случаев будет полезно знать следствия первого замечательного предела. Благодаря им можно быстро вычислить нужные пределы.

Читайте также:  Фото для фейковых страниц для пацанов

Примеры решений

Рассмотрим первый замечательный предел, примеры решения которого на вычисление пределов содержащих тригонометрические функции и неопределенность $ igg[frac<0><0>igg] $

Пример 1
Вычислить $ lim_ frac<sin2x> <4x>$
Решение

Рассмотрим предел и заметим, что в нём присутствует синус. Далее подставим $ x = 0 $ в числитель и знаменатель и получим неопределенность нуль делить на нуль: $$ lim_ frac<sin2x> <4x>= frac<0> <0>$$ Уже два признака того, что нужно применять замечательный предел, но есть небольшой нюанс: сразу применить формулу мы не сможем, так как выражение под знаком синуса отличается от выражения стоящего в знаменателе. А нам нужно, чтобы они были равны. Поэтому с помощью элементарных преобразований числителя мы превратим его в $ 2x $. Для этого мы вынесем двойку из знаменателя дроби отдельным множителем. Выглядит это так: $$ lim_ frac<sin2x> <4x>= lim_ frac<sin2x> <2cdot 2x>= $$ $$ = frac<1> <2>lim_ frac<sin2x> <2x>= frac<1><2>cdot 1 = frac<1> <2>$$ Обратите внимание, что в конце $ lim_ frac<sin2x> <2x>= 1 $ получилось по формуле.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ $$ lim_ frac<sin2x> <4x>=frac<1> <2>$$

Как всегда сначала нужно узнать тип неопределенности. Если она нуль делить на нуль, то обращаем внимание на наличие синуса: $$ lim_ frac<sin(x^3+2x)> <2x-x^4>= frac<0> <0>= $$ Данная неопределенность позволяет воспользоваться формулой первого замечательного предела, но выражение из знаменателя не равно аргументу синуса? Поэтом "в лоб" применить формулу нельзя. Необходимо умножить и разделить дробь на аргумент синуса: $$ = lim_ frac<(x^3+2x)sin(x^3+2x)> <(2x-x^4)(x^3+2x)>= $$ Теперь по свойствам пределов расписываем: $$ = lim_ frac<(x^3+2x)><2x-x^4>cdot lim_ frac<sin(x^3+2x)> <(x^3+2x)>= $$ Второй предел как раз подходит под формулу и равен единице: $$ = lim_ frac<2x-x^4>cdot 1 = lim_ frac <2x-x^4>= $$ Снова подставляем $ x = 0 $ в дробь и получаем неопределенность $ frac<0> <0>$. Для её устранения достоточно вынести за скобки $ x $ и сократить на него: $$ = lim_ frac = lim_ frac <2-x^3>= $$ $$ = frac<0^2 + 2> <2 — 0^3>= frac<2> <2>= 1 $$

Пример 2
Найти $ lim_ frac<sin(x^3+2x)> <2x-x^4>$
Решение
Ответ
$$ lim_ frac<sin(x^3+2x)> <2x-x^4>= 1 $$

Подставляя $ x = 3 $ в аргумент синуса обращаем внимание на то, что сам аргумент стремится к нулю, как и синус: $$ igg(fracigg) o 0, ext < при >x o 3 $$

Выполняем решение, используя первый замечательный предел: $$ lim_ frac<frac<sin(x^2-9)>><frac> = 1$$

Пример 3
Определить $ lim_ frac<frac<sin(x^2-9)>><frac> $
Решение
Ответ
$$ lim_ frac<frac<sin(x^2-9)>><frac> = 1$$

Вычисление начнём с подстановки $ x=0 $. В результате получаем неопределенность $ frac<0> <0>$. Предел содержит синус и тангенс, что намекает на возможное развитие ситуации с использованием формулы первого замечательного предела. Преобразуем числитель и знаменатель дроби под формулу и следствие:

Теперь видим в числителе и знаменателе появились выражения подходящие под формулу и следствия. Аргумент синуса и аргумент тангенса совпадают для соответствующих знаменателей

Пример 4
Вычислить $ lim_ frac<sin2x> $
Решение
Ответ
$$ lim_ frac<sin2x> = frac<2> <3>$$
Читайте также:  Виртуальный оптический диск для virtualbox

В статье: "Первый замечательный предел, примеры решения" было рассказано о случаях, в которых целесообразно использовать данную формулу и её следствия.

Обычно второй замечательный предел записывают в такой форме:

Число $e$, указанное в правой части равенства (1), является иррациональным. Приближённое значение этого числа таково: $eapprox<2<,>718281828459045>$. Если сделать замену $t=frac<1>$, то формулу (1) можно переписать в следующем виде:

Как и для первого замечательного предела, неважно, какое выражение стоит вместо переменной $x$ в формуле (1) или вместо переменной $t$ в формуле (2). Главное – выполнение двух условий:

  1. Основание степени (т.е. выражение в скобках формул (1) и (2)) должно стремиться к единице;
  2. Показатель степени (т.е. $x$ в формуле (1) или $frac<1>$ в формуле (2)) должен стремиться к бесконечности.

Говорят, что второй замечательный предел раскрывает неопределенность $1^infty$. Заметьте, что в формуле (1) мы не уточняем, о какой именно бесконечности ($+infty$ или $-infty$) идёт речь. В любом из этих случаев формула (1) верна. В формуле (2) переменная $t$ может стремиться к нулю как слева, так и справа.

Отмечу, что есть также несколько полезных следствий из второго замечательного предела. Примеры на использование второго замечательного предела, равно как и следствий из него, очень популярны у составителей стандартных типовых расчётов и контрольных работ.

Сразу отметим, что основание степени (т.е. $frac<3x+1><3x-5>$) стремится к единице:

При этом показатель степени (выражение $4x+7$) стремится к бесконечности, т.е. $lim_(4x+7)=infty$.

Основание степени стремится к единице, показатель степени – к бесконечности, т.е. мы имеем дело с неопределенностью $1^infty$. Применим формулу (1) для раскрытия этой неопределённости. В основании степени формулы (1) расположено выражение $1+frac<1>$, а в рассматриваемом нами примере основание степени таково: $frac<3x+1><3x-5>$. Посему первым действием станет формальная подгонка выражения $frac<3x+1><3x-5>$ под вид $1+frac<1>$. Для начала прибавим и вычтем единицу:

Следует учесть, что просто так добавить единицу нельзя. Если мы вынуждены добавить единицу, то её же нужно и вычесть, дабы не изменять значения всего выражения. Для продолжения решения учтём, что

Продолжим «подгонку». В выражении $1+frac<1>$ формулы (1) в числителе дроби находится 1, а в нашем выражении $1+frac<6><3x-5>$ в числителе находится $6$. Чтобы получить $1$ в числителе, опустим $6$ в знаменатель с помощью следующего преобразования:

Итак, основание степени, т.е. $1+frac<1><frac<3x-5><6>>$, подогнано под вид $1+frac<1>$, который требуется в формуле (1). Теперь начнём работать с показателем степени. Заметьте, что в формуле (1) выражения, стоящие в показатели степени и в знаменателе, одинаковы:

Значит, и в нашем примере показатель степени и знаменатель нужно привести к одинаковой форме. Чтобы получить в показателе степени выражение $frac<3x-5><6>$, просто домножим показатель степени на эту дробь. Естественно, что для компенсации такого домножения, придется тут же домножить на обратную дробь, т.е. на $frac<6><3x-5>$. Итак, имеем:

Читайте также:  Apc smart ups 1500 аккумулятор замена

Отдельно рассмотрим предел дроби $frac<6cdot(4x+7)><3x-5>$, расположенной в степени:

Согласно формуле (1) имеем $lim_left(1+frac<1><frac<3x-5><6>>
ight )^<frac<3x-5><6>>=e$. Кроме того, $lim_frac<6cdot(4x+7)><3x-5>=8$, поэтому возвращаясь к исходному пределу, получим:

Полное решение без промежуточных пояснений будет иметь такой вид:

Кстати сказать, вовсе не обязательно использовать первую формулу. Если учесть, что $frac<6><3x-5> o<0>$ при $x oinfty$, то применяя формулу (2), получим:

Выражение, стоящее в основании степени, т.е. $7-6x$, стремится к единице при условии $x o<1>$, т.е. $lim_<1>>(7-6x)=7-6cdot1=1$. Для показателя степени, т.е. $frac<3x-3>$, получаем: $lim_<1>>frac<3x-3>=infty$. Итак, здесь мы имеем дело с неопределенностью вида $1^infty$, которую раскроем с помощью второго замечательного предела.

Для начала отметим, что в формуле (1) переменная $x$ стремится к бесконечности, в формуле (2) переменная $t$ стремится к нулю. В нашем случае $x o<1>$, поэтому имеет смысл ввести новую переменную, чтобы она стремилась или к нулю (тогда применим формулу (2)), или к бесконечности (тогда применим формулу (1)). Введение новой переменной, вообще говоря, не является обязательным, это будет сделано просто для удобства решения. Проще всего новую переменную $y$ ввести так: $y=x-1$. Так как $x o<1>$, то $ o<0>$, т.е. $y o<0>$. Подставляя $x=y+1$ в рассматриваемый пример, и учитывая $y o<0>$, получим:

Применим формулу (2). Выражение в основании степени в формуле (2), т.е. $1+t$, соответствует форме выражения в основании степени нашего примера, т.е. $1+(-6y)$ (выражение $-6y$ играет роль $t$). Формула (2) предполагает, что показатель степени будет иметь вид $frac<1>$, т.е. в нашем случае в показателе степени следует получить $frac<1><-6y>$. Домножим показатель степени на выражение $frac<1><-6y>$. Для компенсации такого домножения нужно домножить показатель степени на обратную дробь, т.е. на выражение $frac<-6y><1>=-6y$:

Полное решение без пояснений таково:

Так как $lim_<0>>(cos<2x>)=1$ и $lim_<0>>frac<1><sin^2<3x>>=infty$ (напомню, что $sin o<0>$ при $u o<0>$), то мы имеем дело с неопределённостью вида $1^infty$. Преобразования, аналогичные рассмотренным в примерах №1 и №2, укажем без подробных пояснений, ибо они были даны ранее:

Так как $sin^2x=frac<1-cos<2x>><2>$, то $cos<2x>-1=-2sin^2x$, поэтому:

Здесь мы учли, что $lim_<0>>frac<sin^2><sin^2<3x>>=frac<1><9>$. Подробное описание того, как находить этот предел, дано в соответствующей теме.

Так как при $x>0$ имеем $ln(x+1)-ln=lnleft(frac
ight)$, то:

Раскладывая дробь $frac$ на сумму дробей $frac=1+frac<1>$ получим:

Так как $lim_<2>>(3x-5)=6-5=1$ и $lim_<2>>frac<2x>=infty$, то мы имеем дело с неопределенностью вида $1^infty$. Подробные пояснения даны в примере №2, здесь же ограничимся кратким решением. Сделав замену $t=x-2$, получим:

Можно решить данный пример и по-иному, используя замену: $t=frac<1>$. Разумеется, ответ будет тем же:

Выясним, к чему стремится выражение $frac<2x^2+3><2x^2-4>$ при условии $x oinfty$:

Таким образом, в заданном пределе мы имеем дело с неопределенностью вида $1^infty$, которую раскроем с помощью второго замечательного предела: