Зависимость кпд от сопротивления

ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ:

, (1)

I- сила тока в цепи; Е- электродвижущая сила источника тока, включённого в цепь; R- сопротивление внешней цепи; r- внутреннее сопротивление источника тока.

МОЩНОСТЬ, ВЫДЕЛЯЕМАЯ ВО ВНЕШНЕЙ ЦЕПИ

. (2)

Из формулы (2) видно, что при коротком замыкании цепи (R®0) и при R®эта мощность равна нулю. При всех других конечных значениях R мощность Р1> 0. Следовательно, функция Р1 имеет максимум. Значение R, соответствующее максимальной мощности, можно получить, дифференцируя Р1 по R и приравнивая первую производную к нулю:

. (3)

Из формулы (3), с учётом того, что R и r всегда положительны, а Е ? 0, после несложных алгебраических преобразований получим:

Следовательно, мощность, выделяемая во внешней цепи, достигает наибольшего значения при сопротивлении внешней цепи равном внутреннему сопротивлению источника тока.

При этом сила тока в цепи (5)

равна половине тока короткого замыкания. При этом мощность, выделяемая во внешней цепи, достигает своего максимального значения, равного

. (6)

Когда источник замкнут на внешнее сопротивление, то ток протекает и внутри источника и при этом на внутреннем сопротивлении источника выделяется некоторое количество тепла. Мощность, затрачиваемая на выделение этого тепла равна

. (7)

Следовательно, полная мощность, выделяемая во всей цепи , определится формулой

= I 2 (R+r) = IE (8)

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ источника тока равен . (9)

Из формулы (8) следует, что

, (10)

т.е. Р1 изменяется с изменением силы тока в цепи по параболическому закону и принимает нулевые значения при I = 0 и при . Первое значение соответствует разомкнутой цепи ( R>> r ), второе – короткому замыканию ( R

ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ:

, (1)

I- сила тока в цепи; Е- электродвижущая сила источника тока, включённого в цепь; R- сопротивление внешней цепи; r- внутреннее сопротивление источника тока.

МОЩНОСТЬ, ВЫДЕЛЯЕМАЯ ВО ВНЕШНЕЙ ЦЕПИ

. (2)

Из формулы (2) видно, что при коротком замыкании цепи (R®0) и при R®эта мощность равна нулю. При всех других конечных значениях R мощность Р1> 0. Следовательно, функция Р1 имеет максимум. Значение R, соответствующее максимальной мощности, можно получить, дифференцируя Р1 по R и приравнивая первую производную к нулю:

. (3)

Из формулы (3), с учётом того, что R и r всегда положительны, а Е ? 0, после несложных алгебраических преобразований получим:

Читайте также:  Усилитель для автомагнитолы на алиэкспресс

Следовательно, мощность, выделяемая во внешней цепи, достигает наибольшего значения при сопротивлении внешней цепи равном внутреннему сопротивлению источника тока.

При этом сила тока в цепи (5)

равна половине тока короткого замыкания. При этом мощность, выделяемая во внешней цепи, достигает своего максимального значения, равного

. (6)

Когда источник замкнут на внешнее сопротивление, то ток протекает и внутри источника и при этом на внутреннем сопротивлении источника выделяется некоторое количество тепла. Мощность, затрачиваемая на выделение этого тепла равна

. (7)

Следовательно, полная мощность, выделяемая во всей цепи , определится формулой

= I 2 (R+r) = IE (8)

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ источника тока равен . (9)

Из формулы (8) следует, что

, (10)

т.е. Р1 изменяется с изменением силы тока в цепи по параболическому закону и принимает нулевые значения при I = 0 и при . Первое значение соответствует разомкнутой цепи ( R>> r ), второе – короткому замыканию ( R

2.1. Постоянный электрический ток…………………………………….4

3. Экспериментальная часть……………………………………………..9

3.2. Приборы и принадлежности………………………………………..9

3.3. Физическая основа метода………………………………………. 10

Лабораторная работа № 33

Изучение законов постоянного тока

Исследование зависимости КПД источника тока от сопротивления нагрузки

1. Определить КПД источника тока.

2. Получить экспериментальную зависимость мощности источника тока от сопротивления нагрузки.

3. Получить экспериментальную зависимость КПД источника тока от сопротивления нагрузки.

2. Теоретическая часть

2.1. Постоянный электрический ток

Электрическим током называется любое упорядоченное направленное движение электрических зарядов. Для возникновения и существования электрического тока необходимо с одной стороны наличие свободных носителей тока (заряженных частиц), способных перемещаться упорядоченно, а с другой стороны – наличие электрического поля, под действием которого частицы бы двигались упорядоченно. В проводнике под действием приложенного электрического поля электрические заряды перемещаются (положительные – по полю, отрицательные – против поля рис.2.1), т. е. в проводнике возникает электрический ток, называемый током проводимости. За направление тока условно принимают направление движения положительных зарядов.

Рис. 2.1. Проводник под действием электрического поля

Количественной мерой электрического тока служит сила тока. Сила тока – скалярная физическая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени:

. (2.1)

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Величина постоянного тока определяется по формуле:

, (2.2)

где q – электрический заряд, прошедший через поперечное сечение проводника за время t.

Чтобы в проводнике был постоянный электрический ток, необходимо на его концах поддерживать постоянную разность потенциалов с помощью специальных устройств – источников тока за счет работы внешних сил неэлектростатического происхождения.

Читайте также:  Мой диск на яндексе

Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними. Природа сторонних сил может быть различной (в гальванических элементах – за счет химических реакций между электролитами и электродами).

Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах проводника поддерживается постоянная разность потенциалов и постоянный электрический ток рис. 2.2.

Электродвижущей силой называется работа сторонних сил по перемещению положительного единичного заряда:

. (2.3)

Работа сторонних сил над зарядом на участке проводника 1–2 равна:

, (2.4)

где – напряженность поля сторонних сил.

Подставив работу на участке 1–2 в формулу (3), получим электродвижущую силу, действующую на участке 1–2 (рис. 2.2).

. (2.5)

Связь тока с ЭДС выражается законом Ома для замкнутой цепи рис. 2.3:

, (2.6)

где R+r – полное сопротивление цепи, R – сопротивление внешней цепи, r – внутреннее сопротивление источника тока.

Рис. 2.3. Замкнутая цепь

Неоднородный участок цепи

Рис. 2.4. Неоднородный участок цепи

Неоднородным участком цепи называется участок, на котором действуют сторонние и электростатические силы

. (2.7)

Напряжением на неоднородном участке цепи 1–2 называется физическая величина, определяемая работой электростатических и сторонних сил по перемещению положительного единичного заряда (рис. 2.4)

. (2.8)

Однородный участок цепи

Однородным участком цепи называется участок, на котором не действуют сторонние силы, поэтому напряжение на нем равно разности потенциалов рис.2.5.

Рис. 2.5. Однородный участок цепи

Получим закон Ома для однородного участка цепи:

. (2.9)

Таким образом, напряжением на однородном участке проводника 1–2 называется физическая величина, определяемая работой электростатических сил по перемещению положительного единичного заряда.

2.2. Мощность тока

Рассмотрим неоднородный участок цепи постоянного тока, к концам которого приложено напряжение U (рис.2.4). За время t через каждое сечение проводника проходит заряд:

. (2.10)

Это равносильно тому, что заряд q переносится за время t из одного конца проводника в другой. При этом электростатическое поле и сторонняя сила, действующая на данном участке, совершают работу:

. (2.11)

Подставив в данную формулу выражение (2.7), получим:

. (2.12)

Мощностью называется работа электрического тока, произведенная в единицу времени

(2.13)

Из выражений (2.10) и (2.11) следует, что мощность, развиваемая током на неоднородном рассматриваемом участке цепи (рис.2.4), равна:

(2.14)

.

Из выражения (2.13) при можно выразить мощность источника тока, которая будет называться полной (затраченной) мощностью (рис 2.3):

Читайте также:  Как настроить джойстик для телефона

. (2.15)

С учетом законов Ома это выражение можно представить в нескольких эквивалентных формах:

(2.16)

. (2.17)

Из выражения (2.16) следует:

, (2.18)

где , (2.19)

. (2.20)

Коэффициентом полезного действия источника тока называется физическая величина, определяемая отношением полезной мощности источника тока к полной мощности:

КПД = (2.21)

Если ток проходит по неподвижному проводнику, то вся работа тока идет на нагревание проводника:

(2.22)

Выражение (2.21) представляет собой закон Джоуля–Ленца.

3. Экспериментальная часть

1. Во избежание поражения электрическим током все электрические приборы должны быть заземлены.

2.Проверить правильность сборки схемы до включения электрических приборов, в случае сомнения обратиться к преподавателю.

3. Во время работы запрещается прикасаться к оголенным участкам электрооборудования, предварительно их не обесточив.

3.2. Приборы и принадлежности

Схема экспериментальной установки представлена на рис. 3.1

Рис.3.1. Схема экспериментальной установки: mА – миллиамперметр; R – сопротивление нагрузки (реостат); – источник тока; r – внутреннее сопротивление источника тока (r =22 Ом).

Электрическую схему экспериментальной установки можно представить в виде эквивалентной схемы рис. 3.2

3.3. Физическая основа метода

Рассмотрим цепь постоянного тока. Источник ЭДС создает в цепи ток. Мощность, развиваемая источником тока , является полной.

С увеличением внешнего сопротивления от 0 до бесконечности напряжение на нагрузке возрастает от 0 до значения ЭДС, а ток в цепи при этом уменьшается до 0. Полная мощность будет изменяться от максимального значения до 0. А полезная мощность сначала убывает, а потом возрастает.

Максимальное значение полезной мощности достигается при R = r (режим согласования)

Полная мощность в режиме согласования определяется по формуле:

а при R=0 полная мощность составляет: Р= . (3.3)

Внешнее напряжение источника в режиме согласования равно , КПД источника равно 0,5.

В качестве сопротивления нагрузки используется реостат. Реостат представляет собой керамический цилиндр, на который равномерно намотан провод с большим сопротивлением рис.3.3. При подключении реостата к электрической цепи с помощью нижних клемм (1 и 2) его сопротивление будет постоянным и максимальным, так как длина провода (l) максимальна.

Сопротивление реостата можно определить по формуле:

, (3.4)

где l – длина проводника; S – площадь поперечного сечения проводника; – удельное сопротивление материала проводника.

Так как выше перечисленные параметры реостата не заданы, сопротивление реостата можно определить по градуировочному графику, предварительно измерив d – расстояние от края цилиндра с обмоткой до положения движка.